Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Insight into Interaction of Volcanic Ash With Jet Engines

By University of Liverpool | April 4, 2016

Share

Scientists at the University of Liverpool and the Ludwig Maximilian University of Munich have developed a new method to assess the impact of volcanic ash on jet engines.

Little is known scientifically about the effects of volcanic ash on aircraft but the impact it can have on the aviation industry was evidenced when the Eyjafjalla volcano in Iceland erupted in 2010 resulting in prolonged disruption to air travel and significant economic losses exceeding £1 billion.

Volcanologists from the University analysed samples of volcanic ash from nine different volcanoes to see how its chemical composition controls its behavior upon melting at jet engine temperatures which range between 1100 °C and 2000 °C.

Volcanic ash is widely recognized as being a potentially fatal hazard for aircraft primarily through melting and sticking to the inside of the turbines but is particularly problematic if it affects the cooling system.

Current guidelines

Guidelines on the threat of volcanic ash particles on jet engines, which were introduced in 1982, rely on early engineering studies which tested the impact of sand and dust particles on road vehicles. Volcanic ash is however chemically different and estimating its potential hazard is complicated by the fact that chemical composition can vary widely amongst volcanoes.

Professor Yan Lavallée, volcanologist at the University’s School of Environmental Sciences, said: “Our experiments are the first study to test the conditions for which ash can melt using chemical criteria. Through our experiments we were able to develop a model to predict the melting and sticking conditions of different volcanic ash particles.

“We are able to show that volcanic ash may melt and stick more readily inside jet engines, and that the common use of sand or dust is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard.

Future model

“Any robust future model to assess quantitatively the risk of volcanic ash with jet engines must be based on chemistry and melt theology.

“With the current level of aerial traffic, understanding the generation, transport and impact of volcanic ash becomes a priority and too much is at stake to overlook the role of volcanic ash on aviation.”

The research is published in the Nature Communications was funded by the European Research Council (ERC), the von Humbold society and the AXA Research funds.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings