Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Laser Could Improve the Images in Tomorrow’s Technology

By Yale University | January 20, 2015

Share

A new semiconductor laser developed at Yale has the potential to significantly improve the imaging quality of the next generation of high-tech microscopes, laser projectors, photolithography, holography, and biomedical imaging.

Based on a chaotic cavity laser, the technology combines the brightness of traditional lasers with the lower image corruption of light emitting diodes (LEDs). The search for better light sources for high-speed, full-field imaging applications has been the focus of intense experimentation and research in recent years.

The new laser is described in a paper in the Jan. 19 online edition of the Proceedings of the National Academy of Sciences. Several Yale labs and departments collaborated on the research, with contributions from scientists in applied physics, electrical and biomedical engineering, and diagnostic radiology.

“This chaotic cavity laser is a great example of basic research ultimately leading to a potentially important invention for the social good,” said co-author A. Douglas Stone, the Carl A. Morse Professor and chair of applied physics, and professor of physics. “All of the foundational work was primarily motivated by a desire to understand certain classes of lasers — random and chaotic — with no known applications. Eventually, with input from other disciplines, we discovered that these lasers are uniquely suited for a wide class of problems in imaging and microscopy.”

One of those problems is known as “speckle.” Speckle is a random, grainy pattern, caused by high spatial coherence that can corrupt the formation of images when traditional lasers are used. A way to avoid such distortion is by using LED light sources. The problem is, LEDs are not bright enough for high-speed imaging.

The new, electrically pumped semiconductor laser offers a different approach. It produces an intense emission, but with low spatial coherence.

“For full-field imaging, the speckle contrast should be less than ~4% to avoid any disturbance for human inspection,” explained Hui Cao, professor of applied physics and of physics, who is the paper’s corresponding author. “As we showed in the paper, the standard edge-emitting laser produced speckle contrast of ~50%, while our laser has the speckle contrast of 3%. So our new laser has completely eliminated the issue of coherent artifact for full-field imaging.”

Co-author Michael A. Choma, assistant professor of diagnostic radiology, pediatrics, and biomedical engineering, said laser speckle is a major barrier in the development of certain classes of clinical diagnostics that use light. “It is tremendously rewarding to work with a team of colleagues to develop speckle-free lasers,” Choma said. “It also is exciting to think about the new kinds of clinical diagnostics we can develop.”


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings