Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New ‘Living Material’ Gloves Light Up When They Touch Target Chemicals

By Brooks Hays, United Press International | February 17, 2017

Share

Scientists at MIT have crafted wearable sensors out of cell-infused hydrogel film. Researchers used the new “living material” to design gloves and bandages that light up when they come in contact with target chemicals.

The hydrogel’s watery environment provides nutrients to injected cells, keeping them alive and functioning as designed.

“With this design, people can put different types of bacteria in these devices to indicate toxins in the environment, or disease on the skin,” Timothy Lu, an associate professor of biological engineering, told MIT News. “We’re demonstrating the potential for living materials and devices.”

Previous scientific breakthroughs have allowed researchers to engineer cells to perform a variety of functions, like lighting up when they come in contact with specific chemical compounds.

For Lu and his colleagues, the challenge was to keep programmed cells alive outside of a Petri dish.

The new biocompatible hydrogel developed by the team of engineers, a combination of a polymer and water, improves on previous attempts to bring engineered cells outside of the lab.

Researchers carved tiny channels through the hydrogel layers using 3D printing and micromolding methods. They then affixed the hydrogel film to a porous layer of rubber, which offered protection without sacrificing access to oxygen. Finally, the engineers injected programmed E. coli cells into the channels before soaking the entire material in a solution of nutrients.

“The challenge to making living materials is how to maintain those living cells, to make them viable and functional in the device,” Lu said. “They require humidity, nutrients, and some require oxygen. The second challenge is how to prevent them from escaping from the material.”

Their final material kept the cells alive and active for several days, even as they stretched and folded the material.

In a series of tests, researchers injected different engineered cells into separate channels in a hydrogel-elastomer bandage. Each channel glowed green in response to contact with a different chemical compound.

Researchers repeated the experiment using a hydrogel-elastomer glove with engineered cells injected into the tiny channels carved into the glove’s fingertips. The tips glowed green when the glove wearer picked up cotton balls soaked with the target chemicals.

Scientists described their living material breakthrough in the journal PNAS.


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings