Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

New Method Improves Strength & Modulus in Carbon Fibers

By Georgia Institute of Technology | July 23, 2015

Photograph shows a high strength and high modulus carbon fiber processed at Georgia Tech. (Image credit: Gary Meek, Georgia Tech)  Carbon fibers are stronger and lighter than steel, and composite materials based on carbon-fiber-reinforced polymers are being used in an expanding range of aerospace, automotive, and other applications – including major sections of the Boeing 787 aircraft.

It’s widely believed, moreover, that carbon-fiber technology has the potential to produce composites at least 10 times stronger than those in use today.

A research team at the Georgia Institute of Technology has developed a novel technique that sets a new milestone for the strength and modulus of carbon fibers. This alternative approach is based on an innovative technique for spinning polyacrylonitrile (PAN), an organic polymer resin used to make carbon fibers.

The work is part of a four-year, $9.8 million project sponsored by the Defense Advanced Research Projects Agency (DARPA) to improve the strength of carbon-fiber materials. The research was reported recently in the journal Carbon.

“By using a gel-spinning technique to process polyacrylonitrile copolymer into carbon fibers, we have developed next-generation carbon fibers that exhibit a combination of strength and modulus not seen previously with the conventional solution-spun method,” said Satish Kumar, a professor in the Georgia Tech School of Materials Science and Engineering who leads the project. “In addition, our work shows that the gel-spinning approach provides a pathway for even greater improvements.”

Kumar explained that tensile modulus – a measure of stiffness — refers to the force needed to stretch a material by a given amount. Tensile strength expresses how much force is required to actually break the material.

Image credit: Georgia TechIn gel spinning, the solution is first converted to a gel; this technique binds polymer chains together and produces robust inter-chain forces that increase tensile strength. Gel spinning also increases directional orientation of fibers, which also augments strength. By contrast, in conventional solution spinning, a process developed more than 60 years ago, PAN co-polymer solution is directly converted to a solid fiber without the intermediate gel state and produces less-robust material.

The gel-spun carbon fiber produced by Kumar’s team was tested at 5.5 to 5.8 gigapascals (GPa) – a measure of ultimate tensile strength – and had a tensile modulus in the 354-375 GPa range. The material was produced on a continuous carbonization line at Georgia Tech that was constructed for this DARPA project.

“This is the highest combination of strength and modulus for any continuous fiber reported to-date,” Kumar said. “And at short gauge length, fiber tensile strength was measured as high as 12.1 GPa, which is the highest tensile-strength value ever reported for a PAN-based carbon fiber.”

Moreover, Kumar noted, the internal structure of these gel-spun carbon fibers measured at the nanoscale showed fewer imperfections than state-of-the-art commercial carbon fibers, such as IM7. Specifically, the gel-spun fibers display a lower degree of polymer-chain entanglements than those produced by solution spinning. This smaller number of entanglements results from the fact that gel spinning uses lower concentrations of polymer than solution-spinning methods.

Kumar and his team convert the gel-spun polymer mix into carbon fibers via a selective treatment process called pyrolysis, in which the spun polymer is gradually subjected to both heat and stretching. This technique eliminates large quantities of hydrogen, oxygen, and nitrogen from the polymer, leaving mostly strength-increasing carbon.

“It’s important to remember that the current performance of solution-spun PAN-based carbon fibers has been achieved after many years of material and process optimization – yet very limited material and process optimization studies have been carried out to date on the gel-spun PAN fiber,” Kumar said. “In the future, we believe that materials and process optimization, enhanced fiber circularity, and increased solution homogeneity will further increase the strength and modulus of the gel-spinning method.”

You Might Also Like


Filed Under: Materials • advanced

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more