Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER

New motor could spur new applications

By Lisa Eitel | October 6, 2025

It often happens than new technologies enable new forms of automation — or makes them more practical. One new electric-motor design recognized by this year’s R&D 100 Awards could prove one such technology.

Lisa Eitel | Executive editor


Most electric vehicle or EV motors use permanent-magnet synchronous motors or PMSMs with the magnets on their rotors, and these rare-earth materials are imported to the U.S. — 98% from China. That could prove a liability given today’s political upheaval, trade standoffs, supply-chain risks, and commodity-price fluctuations trending upward.

While eliminating permanent magnets, wound-rotor synchronous motors or WRSMs conventionally use brushes or slip-ring systems for an electromagnetic solution to deliver rotor excitation current. The drawback is these electromagnetic elements can be bulky, inefficient at high speeds, and in need of occasional maintenance. That said, all WRSMs have several advantages over PMSMs — particularly in applications for which efficiency, controllability, and sustainability are priorities.

WRSMs with brushes or slip rings Permanent magnet synchronous motors WRSMs with contactless rotary transformers
Brushes and slip rings wear over time, requiring replacement No mechanical wear of electric-transfer elements No mechanical wear of electric-transfer elements (for longer motor life)
Commutators incur friction losses High efficiency due to direct permanent-magnet excitation sans contact losses No friction losses for efficiency closer to PMSM levels.
Brushes and slip rings can cause sparking No risk of electrical arcing No risk of electrical arcing (for inherently safe operation in high-voltage environments)
Brushes and slip rings may destabilize at high rpm Usually offer superior stability at elevated rpm Smooth and stable operation at high rpm
Brush systems generate EMI Naturally low electrical noise so useful in sensitive systems Cleaner transfer to reduce electrical noise
Environmental factors (dust, vibration, moisture) degrade brushes Generally reliable but magnet strength can degrade should the motor be exposed to high temperatures or other extreme conditions Very robust in harsh settings
Cost effective Rare-earth magnets can be costly and are subject to supply-chain interruptions Conventional materials are cost effective

WRSMs enable precise control of the rotor field via external excitation which in turn makes for unbeatable field weakening at high speeds to satisfy EV and industrial-machinery applications requiring broad speed ranges. WRSMs can also adjust excitation for optimal efficiency and torque control across varying loads. In contrast, PMSMs suffer from constant magnet flux than can cause inefficiencies at high speeds and limited flexibility in torque control.

Rotary-transformer excitation from Oak Ridge National Laboratory (ORNL) makes for a wound-rotor motor that better competes against permanent-magnet rotors.

Now, researchers at Oak Ridge National Laboratory (ORNL) have designed a rotary-transformer–based wireless excitation system to help WRS motors better compete against PMSMs. This design leverages 17 years of ORNL expertise in wireless power transfer, 82 years of ORNL electromagnetics expertise, and 40 years of power electronic converter expertise. How does it work? Well, the system has a stationary (primary) side and a spinning (rotor) side. On the stationary side, ORNL’s high-frequency power inverter operates as a high-frequency resonance inverter that powers the primary coil through a resonant tuning network. The primary coil generates a magnetic field that is linked to the spinning rotor–side coil inducing voltage. This voltage is rectified on the receiver coil and rectifier integrated assembly while output dc current is applied to the rotor windings.

A new WRSM design offers the efficiency and reliability of PMSMs sans reliance on rare-earth magnets.

The design’s advantages abound. The rotor current is accurately estimated sans sensing or communication devices. The rotor side uses an integrated secondary coil with a rectifier on the same printed circuit board. The simple rotor-side architecture eliminates resonant tuning components on the rotor side as well as capacitors. The PCB uses a trace-stranding and transpositioning system that can mimic Litz wire with low losses. A dc-measurement method can integrate into the stationary side to read the current on the rotary transformer. A position sensor is semi-integrated into the rotary transformer so there’s no need for an expensive resolver, either.

A polyphase version of the rotary transformer eliminates housing-assembly eddy-current losses that are usually the primary cause of PMSM losses.

R&D World | rdworldonline.com

You Might Also Like


Filed Under: Industrial automation, Motion Control Tips

 

About The Author

Lisa Eitel

Lisa Eitel has worked in the automation industry since 2001. Her areas of focus include motors, drives, motion control, power transmission, linear motion, and sensing and feedback technologies. She has a B.S. in Mechanical Engineering and is an inductee of Tau Beta Pi engineering honor society; a member of the Society of Women Engineers; and a judge for the FIRST Robotics Buckeye Regionals. Besides her motioncontroltips.com contributions, she also leads the production of the quarterly motion issues of Design World.

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Digitalization made easy: Bridging IT/OT with scalable network infrastructure
  • Apple Rubber custom o-rings for harsh underwater conditions
  • ASMPT chooses Renishaw for high-quality motion control
  • Innovating Together: How Italian Machine Builders Drive Industry Forward Through Collaboration
  • Efficiency Is the New Luxury — and Italy Is Delivering
  • Beyond the Build: How Italy’s Machine Makers Are Powering Smart Manufacturing
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.