Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Software for Increasingly Flexible Factory Processes

By Phys.org | February 9, 2017

Share

Industrial manufacturing usually follows rigidly programmed processes, in which individual work steps and machines are tightly scheduled. This makes production inflexible and causes problems if devices fail or unscheduled com- ponents need to be processed at short notice. At the Hannover Messe Preview on February 9, 2017, Fraunhofer developers will be presenting new software that allows each individual component to tell the machine what has to be done. By breaking away from central production planning, factories can achieve unprecedented agility and flexibility, very much in the spirit of Industrie 4.0.

One-of-a-kind production thanks to digital twins and a smart manufacturing network

The goal is to use the software to create a digital twin for every component. This way, manufacturers will always know how each component was processed, which machine or tool was used and which step is coming up next. This strategy is important for companies, for example, whose production machinery handles batches of different components. In conventional manufacturing setups, it is necessary to repeatedly stop, reprogram and retool systems when switching to the new product. However, with the service-oriented approach, it’s the product itself that tells the devices what needs to be done. “By connecting components and machines in the future, companies will be able to successively manufacture one-of-a-kind pieces, in other words even batches of one,” says Michael Kulik, who is helping develop the new software as a project manager at Fraunhofer. To this end, a component’s entire process data should be made available in the form of its digital twin in a smart manufacturing network. Subsequently, data sets can be analyzed and reused, thus increasing process robustness and product quality. At the Hannover Messe Preview, Fraunhofer researchers will be using a small, representative production line to demonstrate the features of the digital twin, the service-oriented software and connection to the smart manufacturing network.

Service-oriented software leads to flexible production

What is unique about the service-oriented software is that the production process sequence can be easily configured using a menu: By means of drag and drop, users select individual work steps from a list of all services derived from the production environment – and ultimately from the manufacturing machines – and add them into the relevant process chain. They then line these work steps up in a row. In case a machine fails, a top-down, centrally controlled manufacturing setup can – at worst – lead to a full production downtime. With service-oriented software, this should no longer occur: Since the next step for each component is stored in detail in its digital twin concept, users can flexibly redirect the component to another machine that offers the next work step. “Many machines can fulfill multiple tasks in a production line”, says Kulik. “A technically sophisticated 5-axis milling machine, for example, can also do the job of a simpler 3-axis milling machine.” With central production planning, however, there is usually no provision for such switches, because the whole manufacturing process is set up for defined work steps and machines. “Within the smart manufacturing network, the service-oriented software will have the flexibility to decide whether or not to send the job to the 5-axis machine that is free at that moment.”

Plug and produce

Another important prerequisite for flexible manufacturing is the ability to integrate machines from different manufacturers easily into the smart manufacturing network. Consequently, Fraunhofer IPT is working together with partners from science and industry in the Fraunhofer High Performance Center for Connected, Adaptive Production, focusing on the integration of the various manufacturer systems into a shared superordinate software and data platform. “As of yet, there is no equivalent for the sort of plug-and-play approach that we’re so familiar with from everyday technology,” says Dr. Thomas Bobek, coordinator of the Fraunhofer High Performance Center. “Our goal is to pave the way for ‘plug and produce’.”


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings