Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Technology For Measuring Brain Blood Flow With Light

By Andy Fell, UC Davis | April 30, 2018

Share

Biomedical engineers at the University of California, Davis, have developed a new technique for measuring blood flow in the human brain, which could be used in patients with stroke or traumatic brain injury, for example. The new technique, based on conventional digital camera technology, could be significantly cheaper and more robust than prior methods.

The work is described in a paper published April 26 in the journal Optica.

“Our setup is very promising, and the cost should be lower,” said Wenjun Zhou, a postdoctoral researcher working with Vivek Srinivasan, associate professor at the UC Davis Department of Biomedical Engineering.

If you shine a light into a cloudy solution, light particles, or photons, will be scattered in different directions. An experimental technique called diffuse correlation spectroscopy, or DCS, uses essentially this approach to look inside someone’s skull. Laser light is shined on the head; as photons from the laser pass through the skull and brain, they are scattered by blood and tissue. A detector placed elsewhere on the head, where the photons make their way out again, picks up the light fluctuations due to blood motion. These fluctuations provide information about blood flow.

The light signal is very weak, and the further it passes through the skull and brain tissue, the weaker it gets. So DCS requires a number of very sensitive, expensive single photon counting detectors. Boosting the light going in risks burning the patient’s skin.

Interference to boost signal

Zhou and Srinivasan took a different approach, based on the fact that overlapping light waves will reinforce or cancel each other out, like overlapping ripples on a pond.

They first split the light beam into “sample” and “reference” paths. The sample beam goes into the patient’s head and another, stronger, reference beam is routed so that it reconnects with the sample beam before going to the detector. This boosts the signal, meaning that instead of needing about 20 photon-counting detectors that cost a few thousand dollars each, the researchers could use a single CMOS-based digital camera chip for a fraction of the price.

“The strong reference light enhances the weaker signal from the sample,” Zhou said.

They call the method interferometric diffusing wave spectroscopy, or iDWS. An added advantage is that they do not need to turn off the room lights while making measurements with iDWS, Zhou said. Eventually, they may even be able to monitor brain blood flow outdoors, under bright sunlight.

So far, the team has tested their device by making brain recordings from volunteers in the laboratory. They are working with Dr. Bruce Lyeth and Dr. Lara Zimmermann in the UC Davis Department of Neurological Surgery to validate and adapt the technology for eventual use in neurocritical care. UC Davis has applied for a provisional patent on the technology.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings