Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

New Technology For Producing Porous Aluminum

By Peter the Great Saint-Petersburg Polytechnic University | July 18, 2017

Share

A new technology of producing an unsinkable aluminum alloy was developed at Peter the Great St. Petersburg Polytechnic University (SPbPU). Porosity is produced by the addition of foaming gas into liquid aluminum during re-melting. The porous materials can increase stiffness and sound and heat insulating proprieties, according to the SPbPU’s Media-center.

“A high porosity level can be used to decrease the density of structural elements, e.g. sheets. The density can be decreased even lower than the density of water. Resulting structural elements would be unsinkable. And its usage in shipbuilding will ensure unsinkability even with a leak in the hull,” says Oleg Panchenko, deputy head of the Laboratory of Light Materials and Structures SPbPU, one of the inventors.

In many cases, the carrying capacity of thin materials (1 mm or less) is sufficient for a lot of structures. But material with such thickness sometimes has geometric limitations (the thickness is too small for manipulation) or it can’t be joined without deformation. Due to the material’s porosity, it is possible to increase the thickness, maintaining the weight while stiffening the structure.

A similar technology has been patented in Japan, but it produces only entirely porous material. Researchers of SPbPU found a way to produce homogeneous and heterogeneous distribution of pores in the material. Because it is made of solid material, it can be either porous if necessary or with nonporous thickening or solid structure. Using this technology, double-layer sandwiches may be produced in which only one side is porous, increased density can be conferred to selected areas for mechanical or welded joints.


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings