Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

One Order of Steel; Hold the Greenhouse Gases

By atesmeh | May 8, 2013

Share

Anyone who has seen pictures of the giant, red-hot cauldrons in which steel is made — fed by vast amounts of carbon, and belching flame and smoke — would not be surprised to learn that steelmaking is one of the world’s leading industrial sources of greenhouse gases. But remarkably, a new process developed by MIT researchers could change all that.

The new process even carries a couple of nice side benefits: The resulting steel should be of higher purity, and eventually, once the process is scaled up, cheaper. Donald Sadoway, the John F. Elliott Professor of Materials Chemistry at MIT and senior author of a new paper describing the process, says this could be a significant “win, win, win” proposition.

The paper, co-authored by Antoine Allanore, the Thomas B. King Assistant Professor of Metallurgy at MIT, and former postdoc Lan Yin (now a postdoc at the University of Illinois at Urbana-Champaign), has just been published in the journal Nature.

Worldwide steel production currently totals about 1.5 billion tons per year. The prevailing process makes steel from iron ore — which is mostly iron oxide — by heating it with carbon; the process forms carbon dioxide as a byproduct. Production of a ton of steel generates almost two tons of CO2 emissions, according to steel industry figures, accounting for as much as 5 percent of the world’s total greenhouse-gas emissions.

The industry has met little success in its search for carbon-free methods of manufacturing steel. The idea for the new method, Sadoway says, arose when he received a grant from NASA to look for ways of producing oxygen on the moon — a key step toward future lunar bases.

Sadoway found that a process called molten oxide electrolysis could use iron oxide from the lunar soil to make oxygen in abundance, with no special chemistry. He tested the process using lunar-like soil from Meteor Crater in Arizona — which contains iron oxide from an asteroid impact thousands of years ago — finding that it produced steel as a byproduct.

Sadoway’s method used an iridium anode, but since iridium is expensive and supplies are limited, that’s not a viable approach for bulk steel production on Earth. But after more research and input from Allanore, the MIT team identified an inexpensive metal alloy that can replace the iridium anode in molten oxide electrolysis.

It wasn’t an easy problem to solve, Sadoway explains, because a vat of molten iron oxide, which must be kept at about 1600 degrees Celsius, “is a really challenging environment. The melt is extremely aggressive. Oxygen is quick to attack the metal.”

Many researchers had tried to use ceramics, but these are brittle and can shatter easily. “I had always eschewed that approach,” Sadoway says.

But Allanore adds, “There are only two classes of materials that can sustain these high temperatures — metals or ceramics.” Only a few metals remain solid at these high temperatures, so “that narrows the number of candidates,” he says.

Allanore, who worked in the steel industry before joining MIT, says progress has been slow both because experiments are difficult at these high temperatures, and also because the relevant expertise tends to be scattered across disciplines. “Electrochemistry is a multidisciplinary problem, involving chemical, electrical and materials engineering,” he says.

The problem was solved using an alloy that naturally forms a thin film of metallic oxide on its surface: thick enough to prevent further attack by oxygen, but thin enough for electric current to flow freely through it. The answer turned out to be an alloy of chromium and iron — constituents that are “abundant and cheap,” Sadoway says.

In addition to producing no emissions other than pure oxygen, the process lends itself to smaller-scale factories: Conventional steel plants are only economical if they can produce millions of tons of steel per year, but this new process could be viable for production of a few hundred thousand tons per year, he says.

Apart from eliminating the emissions, the process yields metal of exceptional purity, Sadoway says. What’s more, it could also be adapted to carbon-free production of metals and alloys including nickel, titanium and ferromanganese, with similar advantages.

Ken Mills, a visiting professor of materials at Imperial College, London, says the approach outlined in this paper “seems very sound to me,” but he cautions that unless legislation requires the industry to account for its greenhouse-gas production, it’s unclear whether the new technique would be cost-competitive. Nevertheless, he says, it “should be followed up, as the authors suggest, with experiments using a more industrial configuration.”

Sadoway, Allanore and a former student have formed a company to develop the concept, which is still at the laboratory scale, to a commercially viable prototype electrolysis cell. They expect it could take about three years to design, build and test such a reactor.

The research was supported by the American Iron and Steel Institute and the U.S. Department of Energy.

For more information visit www.mit.edu.


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings