Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Optimizing Data Center Placement and Network Design to Strengthen Cloud Computing

By The Optical Society | February 14, 2017

Share

Telecommunication experts estimate the amount of data stored “in the cloud” or in remote data centers around the world, will quintuple in the next five years. Whether it’s streaming video or business’ database content drawn from distant servers, all of this data is — and will continue in the foreseeable future to be – accessed and transmitted by lasers sending pulses of light along long bundles of flexible optical fibers.

Traditionally, the rate information is transmitted does not consider the distance that data must travel, despite the fact that shorter distances can support higher rates. Yet as the traffic grows in volume and uses increasingly more of the available bandwidth, or capacity to transfer bits of data, researchers have become increasingly aware of some of the limitations of this mode of transmission.

New research from Nokia Bell Labs in Murray Hill, New Jersey may offer a way to capitalize on this notion and offer improved data transfer rates for cloud computing based traffic. The results of this work will be presented at the Optical Fiber Communications Conference and Exhibition (OFC), held 19-23 March in Los Angeles, California, USA.

“The challenge for legacy systems that rely on fixed-rate transmission is that they lack flexibility,” said Dr. Kyle Guan, a research scientist at Nokia Bell Labs. “At shorter distances, it is possible to transmit data at much higher rates, but fixed-rate systems lack the capability to take advantage of that opportunity.”

Guan worked with a newly emerged transmission technology called “distance-adaptive transmission,” where the equipment that receives and transmits these light signals can change the rate of transmission depending on how far the data must travel. With this, he set about building a mathematical model to determine the optimal lay-out of network infrastructure for data transfer.

“The question that I wanted to answer was how to design a network that would allow for the most efficient flow of data traffic,” said Guan. “Specifically, in a continent-wide system, what would be the most effective [set of] locations for data centers and how should bandwidth be apportioned? It quickly became apparent that my model would have to reflect not just the flow of traffic between data centers and end users, but also the flow of traffic between data centers.”

External industry research suggests that this second type of traffic, between the data centers, represents about one-third of total cloud traffic. It includes activities such as data backup and load balancing, whereby tasks are completed by multiple servers to maximize application performance.

After accounting for these factors, Guan ran simulations with his model of how data traffic would flow most effectively in a network.

“My preliminary results showed that in a continental-scale network with optimized data center placement and bandwidth allocation, distance-adaptive transmission can use 50 percent less wavelength resources or light transmission, and reception equipment, compared to fixed-rate rate transmission,” said Guan. “On a functional level, this could allow cloud service providers to significantly increase the volume of traffic supported on the existing fiber-optic network with the same wavelength resources.”

Guan recognizes other important issues related to data center placement. “Other important factors that have to be considered include the proximity of data centers to renewable sources of energy that can power them, and latency — the interval of time that passes from when an end user or data center initiates an action and when they receive a response,” he said.

Guan’s future research will involve integrating these types of factors into his model so that he can run simulations that even more closely mirror the complexity of real-world conditions.


Filed Under: Industrial automation

 

Related Articles Read More >

Festo and the power of worker upskilling at the Oracle Industry Lab
Five ways to drive ROI from personnel and cobot investments
Safety Air Guns use engineered air nozzles for high performance
EXAIR’s new no drip siphon fed spray nozzle coats, cools and cleans

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings