Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Organic Electronics: Semiconductors as Decal Stickers

By Ludwig-Maximilians-Universitat Munchen | May 8, 2017

Share

Photo Credit: Stanford School of Engineering

No more error-prone evaporation deposition, drop casting or printing: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and FSU Jena have developed organic semiconductor nanosheets, which can easily be removed from a growth substrate and placed on other substrates.

Today’s computer processors are composed of billions of transistors. These electronic components normally consist of semiconductor material, insulator, substrate, and electrode. A dream of many scientists is to have each of these elements available as transferable sheets, which would allow them to design new electronic devices simply by stacking.

This has now become a reality for the organic semiconductor material pentacene. Dr. Bert Nickel, a physicist at LMU Munich, and Professor Andrey Turchanin (Friedrich Schiller University Jena), together with their teams, have, for the first time, managed to create mechanically stable pentacene nanosheets.

The researchers describe their method in the journal Advanced Materials. They first cover a small silicon wafer with a thin layer of a water-soluble organic film and deposit pentacene molecules upon it until a layer roughly 50 nanometers thick has formed. The next step is crucial: by irradiation with low-energy electrons, the topmost three to four levels of pentacene molecular layers are crosslinked, forming a “skin” that is only about five nanometers thick. This crosslinked layer stabilizes the entire pentacene film so well that it can be removed as a sheet from a silicon wafer in water and transferred to another surface using ordinary tweezers.

Apart from the ability to transfer them, the new semiconductor nanosheets have other advantages. The new method does not require any potentially interfering solvents, for example. In addition, after deposition, the nanosheet sticks firmly to the electrical contacts by van der Waals forces, resulting in a low contact resistance of the final electronic devices. Last but not least, organic semiconductor nanosheets can now be deposited onto significantly more technologically relevant substrates than hitherto.

Of particular interest is the extremely high mechanical stability of the newly developed pentacene nanosheets, which enables them to be applied as free-standing nanomembranes to perforated substrates with dimensions of tens of micrometers. That is equivalent to spanning a 25-meter pool with plastic wrap.

“These virtually freely suspended semiconductors have great potential,” explains Nickel. “They can be accessed from two sides and could be connected through an electrolyte, which would make them ideal as biosensors, for example.” 

“Another promising application is their implementation in flexible electronics for manufacturing of devices for vital data acquisition or production of displays and solar cells,” Turchanin says.


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings