Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19

Oxford and King’s developing prototype for rapidly deployable ventilator

By Paul Heney | March 20, 2020

Share

An interdisciplinary team of engineers and medics is addressing ways to increase the UK’s capacity for ventilator manufacture.

Engineers, anaesthetists and surgeons from the University of Oxford and King’s College London are building and testing prototypes that can be manufactured using techniques and tools available in well-equipped university and small and medium enterprise (SME) workshops.

The team, led by Oxford Professors Andrew Farmery, Mark Thompson and Alfonso Castrejon-Pita and King’s College London’s Dr. Federico Formenti, have been working to define novel mechanisms of operation that will meet the required specifications for safe and reliable function. The design aims to exploit off-the-shelf components and equipment.

The researchers are working in response to UK government calls to increase the country’s ventilator manufacturing capacity due to COVID-19. Demonstrating safety and reliability and achieving regulatory approval of the opensource design will be necessary, and once this has been achieved, the approach could unlock potential for a new kind of distributed manufacturing effort.

Government coordination and ongoing rapid competitive selection of the best design concepts will enable universities, SMEs and large industry to make and assemble these ventilators close to their local NHS services. This may allow local scaling according to demand, and reduce stress on NHS distribution.

“This extraordinary situation demands an extraordinary response and we are pulling all the talents together in an exceptional team combining decades of experience translating research into the clinic, brilliant innovators, and highly skilled technicians,” said Professor Thompson, of Oxford’s Department of Engineering Science.

“Ordinarily, to develop a medical device such as this would be a huge task, and would take years. We have designed a simple and robust ventilator which will serve the specific task of managing the very sickest patients during this crisis. By pooling available expertise from inside and outside the University, and making the design freely available to local manufacturers, we are pleased to be able to respond to this challenge so quickly,” said Professor Farmery, of Oxford’s Nuffield Department of Clinical Neurosciences.

Within a matter of weeks it is hoped a prototype could be developed which would satisfy MHRA (the Medicines and Healthcare products Regulatory Agency) requirements, and the scientists believe a mature manufacturing network at scale could be achievable within 2-3 months.

The Department of Engineering Science has committed to support prototyping efforts and the team is looking for options to develop regulatory approval. The next steps are ensuring the prototype has buy in from all stakeholders, especially healthcare staff, and to demonstrate compliance with the MHRA requirements of performance, safety and reliability.

“The academic partners can provide free to use plans and designs available for download; central communication with workshops at Oxford to provide advice; step-by-step videos and guides for assembly; along with videos to facilitate training and use,” said Thompson.

King’s College London have offered the use of their workshops to manufacture/3D print bespoke components.

“Thinking beyond the current pandemic, we are also aiming to share the know-how and refinement of this relatively inexpensive approach with other countries,” said Formenti.

The project website is at: https://oxvent.org

About Paul Heney

Paul J. Heney, the VP, Editorial Director for Design World magazine, has a BS in Engineering Science & Mechanics and minors in Technical Communications and Biomedical Engineering from Georgia Tech. He has written about fluid power, aerospace, robotics, medical, green engineering, and general manufacturing topics for nearly 25 years. He has won numerous regional and national awards for his writing from the American Society of Business Publication Editors.

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • With virtual commissioning, commissioning time and prototype waste is reduced
  • Master Bond Supreme 10HT High Strength, NASA Low Outgassing Approved Epoxy
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Drilling Rig OEM Benefits from a PLC with Edge Computing Technology: IIoT Case Study
  • #1 Reason for Retaining Ring Failure & How to Overcome It
  • Motion controllers: design from scratch or buy ready-made?
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Tweets by @DesignWorld
Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP Awards

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19