Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Pneumatic Step Motor is First Fully MRI-compatible Motor

By Design World Staff | October 20, 2008

Share

Engineers at Johns Hopkins University are investigating the use of a robot (MrBot) that can operate within the closed bore of magnetic-resonance imaging (MRI) equipment to help physicians perform remote biopsies of tumors under MRI guidance. Researchers involved in the project say that MRI is ideal for this type of application because it is the preferred method for imaging soft tissue, and it provides an image that lets the physician manipulate the robot so that a needle can be inserted precisely in the center of a tumor.  

oct dfi 2.jpg

However, such a system has yet to hit the market because electromagnetic motors typically used in robotics are incompatible with MRI. Ultrasonic (piezoelectric) motors are magnetism free, but they present conductive components and use electricity, which creates image distortions if operated within a certain distance of the object. Engineers at Johns Hopkins have developed a pneumatic step motor to overcome these challenges. PneuStep is the first pneumatic stepper and the first fully MRI-compatible motor because it does not interfere with the electromagnetic field. The motor is comprised of entirely nonmagnetic and dielectric materials, such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics so that the motors are electricity free, exclusively using pressure and light.

oct dfi 1.jpg

Six PneuStep motors actuate the robot. The PneuStep invention is based on the idea that end-to-end motion of a piston within its cylinder is always exact. This can be achieved by simply pressurizing the cylinder, which is easier than positioning the piston in mid-stroke with pneumatic-servo control. To create airflow, a remote pneumatic distributor generates pulsed pressure waves.

According to a paper published in IEEE/ASME Transactions On Mechatronics, VOL. 12, NO. 1 that describes the invention, the step motor successively collects small end-to-end motion strokes in a rotary motion. A step is made by an end-of-stroke motion. A new kinematic principle induces the step motion and de-multiplies it (gears it down) with the same mechanism. The basic motor is rotary, but the integrated gearhead can be configured for either rotary or linear output of various step sizes part/assembly, named ‚“hoop-gear.‚”

The motor assembly includes a motor, gearhead, and incremental position encoder. A special electronic driver controls the motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor.

Unlike other pneumatic types, the motor can easily perform accurate and safe actuation. In case of malfunction it may only stall. What‚’s more, breaking a PneuStep hose, for example, may not unwind the mechanism, which could harm the patient.

Johns Hopkins University
http://urology.jhu.edu/urobotics

::Design World::


Filed Under: Medical, Motion control • motor controls, Motors • stepper, Pneumatic equipment + components

 

Tell Us What You Think!

Related Articles Read More >

Automation 1 Family and iXC4e
Aerotech continues development of Automation1 motion control platform
Motion & Control Enterprises purchases RSA and Global Controls, fourth acquisition this year
49503-ACS Motion-CMxa
ACS Motion Control releases SPiiPlusCMxa EtherCAT motion controller
SDP-SI-040
SDP/SI launches brushless DC motors and motion control products series

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings