Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Portable Optical Clock Used to Measure Gravitation For The First Time

By Physikalisch-Technische Bundesanstalt | February 12, 2018

The transportable strontium optical lattice clock in the Modane Underground Laboratory. Image credit: Lisdat/PTB

A European collaboration involving clock experts from the National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Istituto Nazionale di Ricerca Metrologica (INRIM) has used one of the world’s transportable optical atomic clocks to measure gravitation for the first time. The results of the experiment were published in Nature Physics.

Until now, such delicate clocks have been restricted to laboratories at a few major research institutions, however, researchers at PTB have developed a transportable strontium optical lattice clock, opening up the possibility of performing measurements in the field. The transportable clock was driven in a vibration-damped and temperature-stabilised trailer to the French Modane Underground Laboratory (LSM). Operated by Centre National de la Recherche Scientifique and Grenoble-Alpes University, the multidisciplinary lab is located in the middle of the Fréjus road tunnel between France and Italy.

There, the team measured the gravity potential difference between the exact location of the clock inside the mountain and a second clock at INRIM — located 90 km away in Torino, Italy, at a height difference of about 1,000 m.

The accurate comparison of the two clocks was made possible using a 150 km long optical fibre link, set up by INRIM, and a frequency comb from NPL, to connect the clock to the link. Researchers from Leibniz Universität Hannover also determined the gravity potential difference using conventional geodetic techniques, and the two measurements were shown to be consistent.

With improvements to the accuracy of the transportable optical clock, this technique has the potential to resolve height differences as small as 1 cm across the Earth’s surface. The advantage of using optical clocks is that they can make measurements at specific points, in contrast to satellite-based measurements, such as GRACE and GOCE, which average the gravity potential over length scales of about 100 km.

This novel method could lead to higher resolution measurements of the Earth’s gravity potential, allowing scientists to monitor, with unprecedented accuracy, continental height changes related to sea levels and the dynamics of ocean currents. It will also lead to more consistent national height systems.

Currently, different countries measure the Earth’s surface in the same way, but relative to different reference levels. This has led to problems — one such being the Hochrhein Bridge between Germany and Switzerland, where construction on each side used different sea level calculations, leading to a 54 cm discrepancy between the two sides.

Achieving consistency between national height systems will help to prevent costly mistakes from happening in engineering and construction projects. Improved measurements of gravity potential may also help to improve our understanding of geodynamic effects associated with mass changes under the Earth’s surface.

This type of measurement of height will also help us to monitor changing sea levels in real-time, allowing us to track seasonal and long-term trends in ice sheet masses and overall ocean mass changes. Such data provides critical input into models used to study and forecast the effects of climate change.

Helen Margolis, Fellow in Optical Frequency Standards and Metrology at NPL, said:”Our proof-of-principle experiment demonstrates that optical clocks could provide a way to eliminate discrepancies and harmonise measurements made across national borders. One day such technology could help to monitor sea level changes resulting from climate change.”

Christian Lisdat, Leader of the group ‘Optical Lattice Clocks’ at PTB, said: “Optical clocks are deemed to be the next generation atomic clocks — operating not only in laboratories but also as mobile precision instruments “This cooperation proves again how disciplines such as physics or metrology, geodesy and climate impact research can mutually benefit each other.”

You Might Also Like


Filed Under: Infrastructure

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more