TUCSON, Ariz.– Scientists have discovered what may be ice that was exposed when soil was blown away as NASA’s Phoenix spacecraft landed on Mars last Sunday, May 25. The possible ice appears in an image the robotic arm camera took underneath the lander, near a footpad.
NASA/JPL-Caltech/University Arizona
“We could very well be seeing rock, or we could be seeing exposed ice in the retrorocket blast zone,” said Ray Arvidson of Washington University, St. Louis, Mo., co-investigator for the robotic arm. “We’ll test the two ideas by getting more data, including color data, from the robotic arm camera. We think that if the hard features are ice, they will become brighter because atmospheric water vapor will collect as new frost on the ice.
Testing last night of a Phoenix instrument that bakes and sniffs samples to identify ingredients identified a possible short circuit. This prompted commands for diagnostic steps to be developed and sent to the lander in the next few days. The instrument is the Thermal and Evolved Gas Analyzer. It includes a calorimeter that tracks how much heat is needed to melt or vaporize substances in a sample, plus a mass spectrometer to examine vapors driven off by the heat. The Thursday, May 29, tests recorded electrical behavior consistent with an intermittent short circuit in the spectrometer portion.
The latest data from the Canadian Space Agency’s weather station shows another sunny day at the Phoenix landing site with temperatures holding at minus 30 degrees Celsius (minus 22 degrees Fahrenheit) as the sol’s high, and a low of minus 80 degrees Celsius (minus 112 degrees Fahrenheit). The lidar instrument was activated for a 15-minute period just before noon local Mars time, and showed increasing dust in the atmosphere.
The mission passed a “safe to proceed” review on Thursday evening, meeting criteria to proceed with evaluating and using the science instruments.
The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. For more about Phoenix, visit: http://www.nasa.gov/phoenix and http://phoenix.lpl.arizona.edu.
::Design World::
Filed Under: Aerospace + defense, Data acquisition + DAQ modules, Electronics • electrical, Mechatronics
Tell Us What You Think!