Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19

Power transmission line inspection robots

By Frank Tobe | March 3, 2018

Share

In 2010 I wrote that there were three sponsored research projects to solve the problem of safely inspecting and maintaining high voltage transmission lines using robotics. Existing 2010 methods ranged from humans crawling the lines, to helicopters flying close-by and scanning, to cars and jeeps with people and binoculars attempting to scan with the human eye. (2010 article)

In 2014 I described the progress from 2010 including the Japanese start-up HiBot and their inspection robot Expliner which seemed promising. This project got derailed by the Fukushima disaster which took away the funding and attention from Tepco which was forced to refocus all its resources on the disaster. HiBot later sold their IP to Hitachi High-Tech which, thus far, hasn’t reported any progress or offered any products. (2014 article)

Also in 2014 Canada’s Hydro-Québec Research Institute was working on their transmission line robot, LineScout and in America, the EPRI (American Electric Power Research Institute) was researching robots and drones for line inspection.

Now, in 2018, Canada’s MIR Innovations (the product arm of Hydro Québec) is promoting their new LineRanger inspection robot and their LineDrone flying corrosion sensor as finished products while both Hitachi High Tech and the EPRI have been silent about their research progress thus far.

The progress of these three electrical power research projects to solve a very real need shows how deep pockets are needed to solve real problems with robotic solutions and how slowly that research process often takes. This is not atypical. I observed the same kind of delays in two recent visits I made to robot startups where original concepts have morphed into totally different ones that now – after many development iterations – seem close to acceptably solving the original problems yet with no scale-up production plans in sight — again after years of funding and research.

Comments

  1. William K. says

    March 7, 2018 at 7:46 am

    Power line inspection is a very demanding process both because of the size and the danger. Thus an effective flying inspection robot will definitely provide a real benefit immediately. I did not realize that there was a zinc-type anti-corrosion coating used in power line conductors.. Given that power lines are long-term parts of the infrastructure it would seem to be a lot smarter to make the conductors not using the standard sacrificial anti-corrosion materials, but to instead to use corrosion resistant materials completely. Of course this would increase the initial cost, but given the high prices of both repairs and replacements it may be more cost effective “to do it right the first time.” Of course all engineering is a string of trade-offs and so with some inputs not considering the future sometimes less than optimum decisions are made.

  2. William K. says

    March 7, 2018 at 7:53 am

    Certainly the free flying robotic inspection system is a great way to both improve efficiency and the quality of inspection, and make the job a lot safer, and at the same time reduce costs a whole lot. With all of the miles of high voltage transmission lines there will certainly be a lot of savings provided by an effective airborne robotic inspection system. The next logical steps are automated evaluation of the visual results and then a robotic repair process, which might allow repairs without switching off the power or putting humans at risk.

Tell Us What You Think! Cancel reply

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • With virtual commissioning, commissioning time and prototype waste is reduced
  • Master Bond Supreme 10HT High Strength, NASA Low Outgassing Approved Epoxy
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Drilling Rig OEM Benefits from a PLC with Edge Computing Technology: IIoT Case Study
  • #1 Reason for Retaining Ring Failure & How to Overcome It
  • Motion controllers: design from scratch or buy ready-made?
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Tweets by @DesignWorld
Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP Awards

Copyright © 2021 WTWH Media, LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media. Site Map | Privacy Policy | RSS

Search Design World

  • Home
  • Articles
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
  • 3D CAD Models
    • PARTsolutions
    • TraceParts
  • Leadership
    • 2020 Winners
    • 2019 Winners
    • 2020 LEAP Awards
  • Resources
    • DIGITAL ISSUES
      • EE World Digital Issues
    • Future of Design Engineering
    • 2020 LEAP Awards
    • MC² Motion Control Classroom
    • Motion Design Guide Library
    • Podcasts
    • Suppliers
    • Webinars
  • Women in Engineering
  • Ebooks / Tech Tips
  • Videos
  • Subscribe
  • COVID-19