Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Predicting Landslides with Light

By The Optical Society | September 29, 2014

Share

Optical fiber sensors are used around the world to monitor the condition of difficult-to-access segments of infrastructure — such as the underbellies of bridges, the exterior walls of tunnels, the feet of dams, long pipelines and railways in remote rural areas.

Now, a team of researchers in Italy are expanding the reach of optical fiber sensors “to the hills” by embedding them in shallow trenches within slopes to detect and monitor both large landslides and slow slope movements.

The team will present their research at The Optical Society’s (OSA) 98th Annual Meeting, Frontiers in Optics, being held Oct. 19-23 in Tucson, Arizona, USA.

As major disasters around the world this year have shown, landslides can be stark examples of nature at her most unforgiving. Within seconds, a major landslide can completely erase houses and structures that have stood for years, and the catastrophic toll they inflict on communities is felt not just in that destructive loss of property but in the devastating loss of life.

The 1999 Vargus tragedy in Venezuela, for instance, killed tens of thousands of people and erased whole towns from the map without warning.

The motivation for an early warning technology, like the one the Italian team has devised, is to find a way to mitigate such losses —just as hurricane tracking can prompt coastal evacuations and save lives.

Predicting Landslides by Detecting Land Strains

Landslides are failures of a rock or soil mass, and are always preceded by various types of “pre-failure” strains — known technically as elastic, plastic and viscous volumetric and shear strains.

While the magnitude of these pre-failure strains depends on the rock or soil involved — ranging from fractured rock debris and pyroclastic flows to fine-grained soils — they are measurable.

This new technology can detect small shifts in soil slopes, and thus can detect the onset of landslides. Usually, electrical sensors have been used for monitoring landslides, but these sensors are easily damaged.

Optical fiber sensors are more robust, economical and sensitive. This is where the new technology could make a difference.

“Distributed optical fiber sensors can act as a ‘nervous system’ of slopes by measuring the tensile strain of the soil they’re embedded within,” explained Professor Luigi Zeni, who is in the Department of Industrial & Information Engineering at the Second University of Naples.

Taking it a step further, Zeni and his colleagues worked out a way of combining several types of optical fiber sensors into a plastic tube that twists and moves under the forces of pre-failure strains.

Researchers are then able to monitor the movement and bending of the optical fiber remotely to determine if a landslide is imminent.

The use of novel fiber optic sensors “allows us to overcome some limitations of traditional inclinometers, because fiber-based ones have no moving parts and can withstand larger soil deformations,” Zeni said. “These sensors can be used to cover very large areas—several square kilometers—and interrogated in a time-continuous way to pinpoint any critical zones.”

The findings clearly demonstrate the potential of distributed optical fiber sensors as an entirely new tool to monitor areas subject to landslide risk, Zeni said, and to develop early warning systems based on geo-indicators — early deformations — of slope failures.


Filed Under: Infrastructure

 

Related Articles Read More >

Do Sensors Make Infrastructure Safer?
Crawling Robots and Flying Drones May Help Missouri’s Bridges
Viasat and Facebook Collaborate to Expand Internet Connectivity in Rural Mexico
Smartphone-Based System to Monitor America’s Crumbling Infrastructure

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings