Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Preparing for Air Quality Airborne Science

By NASA | April 25, 2016

Share

There are many layers to orchestrating a mission as complex as the Korean U.S. Air Quality (KORUS-AQ) study, which gets underway next week in South Korea. Preparing the aircraft and science instruments to come together as one is just a single layer, but it’s an extremely important one for ensuring a safe and successful mission.

KORUS-AQ, a joint field campaign by NASA and South Korea’s National Institute of Environmental Research, will combine observations from aircraft, satellites, ships and ground stations to assess air quality across urban, rural and coastal areas of South Korea. These data will help shape the development of the next-generation system of space- and ground-based sensors for air quality monitoring and forecasting.

NASA’s DC-8 flying laboratory looks like a normal passenger jet, but it’s far from it. The highly modified aircraft has removable seats, ports and windows. The onboard electronics have also been modified to support a variety of instruments. Despite the many “holes” in the aircraft, the structure is highly stable.

Instrument integration work began on March 21 when the instruments were shipped to the science lab at Armstrong Flight Research Center’s Hangar 703in Palmdale. Some of the instruments arrived in pieces and had to be built from the ground up before they were installed. Others arrived fully assembled and only needed to go through power and other system checks before they were ready for installation.

Before loading instruments into the plane, DC-8 quality inspector Scott Silver inspected each of the instruments for “airworthiness” in the science lab. He made sure that each instrument did not emit sparks or smoke or create other hazards that could potentially cause problems during flight.

“Once the instrument is on the plane, it’s not coming off. But we need to make sure it’s safe before we even get to that point,” Silver said.

While the scientists made sure their instruments were functional, aircraft mechanics removed windows on the aircraft and installed a wide variety of air intake probes.  They also installed optical ports into the top and bottom of the plane for laser sensors. After port installation was done, the aircraft looked somewhat like a porcupine.

Each instrument was then rolled out of the science lab and placed on a large scale to be weighed for aircraft weight and balance requirements. From there, each instrument was loaded onto a lift and carried up to the aft doors of the aircraft.

This part was tricky. Cabin space is limited and the payload of 26 instruments is large compared to most DC-8 missions. So instruments had to be loaded in a specific order, starting with the instruments located at the front of the plane. 

Mechanics, avionic techs, data system engineers and experimenters worked side by side to install each instrument without causing delays to the 10–20 instruments in the queue behind them. The experimenters were then free to make sure their instruments were working and communicating with the onboard data system.

After installation, the aircraft was moved outside of the hangar to allow the experimenters to calibrate the instruments. The aircraft was then turned back over to the DC-8 crew who performed necessary aircraft maintenance checks on the engines and cabin pressure.

“Our primary job at NASA Armstrong is to make sure that all of the experimenters onboard are safe and can focus on collecting as much data as possible,” DC-8 crew chief Corry Rung said.

The final checks happened throughout several short flights. The first on April 15, called a “shake flight,” ensured that none of the instrument hardware was loose and that it all functioned correctly. The next two flights on April 18 and 22 were devoted to testing the science instruments themselves. The DC-8 is slated to leave California for Osan Air Base on April 26.

Meanwhile across the country at NASA’s Langley Research Center in Hampton, Virginia, the UC-12B King Air was going through a similar integration process. However, because the King Air has a smaller fuel tank and payload capacity, the aircraft cannot make the transit flight across the Pacific with all of the instruments on board.  

After the science instruments were installed, fitted and checked, they were quickly uninstalled and packed into shipping boxes headed to Osan Air Base. The aircraft was then outfitted with large fuel bladders that will help the aircraft to make the long transit flight. The fuel bladders will be stored inside the aircraft fuselage. Once the King Air aircraft arrives, the crew will reintegrate the science instruments just before the field campaign begins.

The King Air departed Langley Research Center on April 18 and will make stops at Ames Research Center in California, Anchorage, Alaska, Adak Island (Aleutian Islands) and Kadena Air Base in Japan. The aircraft is scheduled to arrive at its destination at Osan Air Base on April 25.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings