Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER

Print Your Own Cell Phone Microscope

By atesmeh | September 16, 2014

This is a cell phone equipped with this small 3D-printed microscope clip can show and send magnified images. The size of an inexpensive glass bead lens determines the magnification -- 100x, 350x or 1000x. Credit: PNNL                Richland, WA – At one o’clock in the morning, layers of warm plastic are deposited on the platform of the 3D printer that sits on scientist Rebecca Erikson’s desk. A small plastic housing, designed to fit over the end of a cell phone, begins to take shape. Pulling it from the printer, Erikson quickly pops in a tiny glass bead and checks the magnification.

In the space of about 10 minutes, Erikson, who works for the U.S. Department of Energy’s Pacific Northwest National Laboratory, has developed exactly what her colleagues asked for — a sleek, simple and inexpensive way to turn a cell phone into a high powered, high quality microscope that can be used to identify biological samples in the field.

Using glass spheres as a microscope lens is not a new idea, optically, but the small size of the housing combined with very high magnification and extremely low cost is what makes this device practical.

“We believe it can fill a need for professional first responders, and also for teachers and students in the classroom, health workers and anyone who just wants an inexpensive microscope readily available,” said Erikson an applied physicist.

There are a few other devices that use a variety of approaches to leverage a cell phone camera into a microscope, but many are bulky, expensive, hard to align, or are lower powered. The PNNL team developed an inexpensive version that can magnify a sample by 1000 times. For specific applications, lower magnifications are easily achievable.

PNNL made the design specifications available, free of charge, to the public so anyone with access to a 3D printer can make their own microscope. See the design specifications here: http://availabletechnologies.pnnl.gov/technology.asp?id=393.

The microscope slips over the camera lens of the cell phone and is no thicker than a phone case. It’s designed to fit several popular cell phone brands and tablets. The material cost, not including the printer, is under $1.

Can identify “suspicious powder” threats

Low cost was a driver in the development. The microscope needed to be so cheap it could literally be thrown away — if it gets contaminated. As part of PNNL’s national security programs, Erikson’s colleagues were working on an internally funded research and development project targeting a specific Department of Homeland Security need for rapid bio detection technologies.

“We interviewed a lot of first responders, public health labs and civil support teams,” said biochemist Cheryl Baird. “They told us the first thing they do when a suspicious powder sample gets to the lab, is to put it under the microscope. An inexpensive, yet powerful microscope in the field could be used to quickly determine whether the material is a threat or a hoax. Combine the microscope with the picture sharing capability of a smart phone and now practically anyone can evaluate a sample at the source and have a trained microbiologist located in a lab elsewhere interpret the results within minutes.”

The sample must first be put into a slide for viewing. If the sample turns out to be a toxic biological material, or the responder is looking at a blood sample, the slip-on microscope can be disposed of and the cell phone fitted with a new microscope for additional work.

Using inexpensive glass beads traditionally used for reflective pavement markings at airports, the PNNL team has demonstrated 1000x magnification, which is necessary to see tiny pathogens. They have also made a 350x version, which is adequate to identify parasites in a blood samples or protozoa in drinking water. A 100x version enables children to investigate common items like salt grains and flower petals in much greater detail.

“We feel there are many uses out there including human and veterinary medicine in developing countries,” said Janine Hutchison a microbiologist at PNNL. “We are also excited about engaging kids in science. School districts have a hard time providing enough microscopes for students. Our science education staff is actively engaged in getting it into the hands of local school children this fall.”

This project was developed with internal discretionary funds that advance early stage ideas to enhance PNNL’s core scientific and technical disciplines.

“We have a strong optics capability at PNNL,” said Baird. “Combined with our national security work, we plan to continue to develop tools that will help protect our nation and assist those on the front lines.”

Video of PNNL’s Cell Phone Microscope: http://www.youtube.com/watch?v=QIh9dnwnt7Y.

For more information visit http://www.pnnl.gov/news.

You Might Also Like


Filed Under: M2M (machine to machine)

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Digitalization made easy: Bridging IT/OT with scalable network infrastructure
  • Apple Rubber custom o-rings for harsh underwater conditions
  • ASMPT chooses Renishaw for high-quality motion control
  • Innovating Together: How Italian Machine Builders Drive Industry Forward Through Collaboration
  • Efficiency Is the New Luxury — and Italy Is Delivering
  • Beyond the Build: How Italy’s Machine Makers Are Powering Smart Manufacturing
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Reports
    • Trends
  • Supplier Listings
  • Advertise
  • SUBSCRIBE
    • MAGAZINE
    • NEWSLETTER
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.