Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Record-Breaking Galaxy Cluster Discovered

By NASA | August 31, 2016

Share

A new record for the most distant galaxy cluster has been set using NASA’s Chandra X-ray Observatory and other telescopes. This galaxy cluster may have been caught right after birth, a brief, but important stage of evolution never seen before.

The galaxy cluster is called CL J1001+0220 (CL J1001 for short) and is located about 11.1 billion light years from Earth. The discovery of this object pushes back the formation time of galaxy clusters – the largest structures in the Universe held together by gravity – by about 700 million years.

“This galaxy cluster isn’t just remarkable for its distance, it’s also going through an amazing growth spurt unlike any we’ve ever seen,” said Tao Wang of the French Alternative Energies and Atomic Energy Commission (CEA)  who led the study.  

The core of CL J1001 contains eleven massive galaxies – nine of which are experiencing an impressive baby boom of stars. Specifically, stars are forming in the cluster’s core at a rate that is equivalent to over 3,000 Suns forming per year, a remarkably high value for a galaxy cluster, including those that are almost as distant, and therefore as young, as CL J1001.

The diffuse X-ray emission detected by Chandra and ESA’s XMM-Newton Observatory comes from a large amount of hot gas, one of the defining features of a true galaxy cluster.

“It appears that we have captured this galaxy cluster at a critical stage just as it has shifted from a loose collection of galaxies into a young, but fully formed galaxy cluster,” said co-author David Elbaz from CEA.

Previously, only these loose collections of galaxies, known as protoclusters, had been seen at greater distances than CL J1001.

The results suggest that elliptical galaxies in galaxy clusters like CL J1001 may form their stars during shorter and more violent outbursts than elliptical galaxies that are outside clusters. Also, this discovery suggests that much of the star formation in these galaxies happens after the galaxies fall onto the cluster, not before.

In comparing their results to computer simulations of the formation of clusters performed by other scientists, the team of astronomers found that CL J1001 has an unexpectedly high amount of mass in stars compared to the cluster’s total mass. This may show that the build-up of stars is more rapid in distant clusters than simulations imply, or it may show that clusters like CL J1001 are so rare that they are not found in today’s largest cosmological simulations.

“We think we’re going to learn a lot about the formation of clusters and the galaxies they contain by studying this object,” said co-author Alexis Finoguenov of the University of Helsinki in Finland, “and we’re going to be searching hard for other examples.”

The result is based on data from a large group of observatories in space and on the ground including Chandra, NASA’s Hubble Space Telescope and Spitzer Space Telescope, ESA’s XMM-Newton and Herschel Space Observatory, the NSF’s Karl G. Jansky Very Large Array, the Atacama Large Millimeter/submillimeter Array (ALMA) , the Institut de Radioastronomie Millimetrique Northern Extended Millimeter Array (IRAM NOEMA), and ESO’s Very Large Telescope.

A paper describing these results will appear in The Astrophysical Journal on August 30th and is available online. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings