Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Removing the barriers to successful autonomous unmanned aircraft

By atesmeh | June 5, 2014

Share

 While civil aviation is on the threshold of potentially revolutionary changes with the emergence of increasingly autonomous unmanned aircraft, these new systems pose serious questions about how they will be safely and efficiently integrated into the existing civil aviation structure, says a new report from the National Research Council. The report identifies key barriers and provides a research agenda to aid the orderly incorporation of unmanned and autonomous aircraft into public airspace. 

“There is little doubt that over the long run the potential benefits of advanced unmanned aircraft and other increasingly autonomous systems to civil aviation will indeed be great, but there should be equally little doubt that getting there while maintaining the safety and efficiency of the nation’s civil aviation system will be no easy matter,” said John-Paul Clarke, co-chair of the committee that wrote the report and associate professor of aerospace engineering at the Georgia Institute of Technology.

The report uses the term “increasingly autonomous” systems to describe a spectrum of technologies, from unmanned aircraft that are piloted remotely – which describes most such aircraft currently in use — to advanced autonomous systems for unmanned aircraft that would adapt to changing conditions and  require little or no human intervention.  Increasingly autonomous systems could also be used in crewed aircraft and air traffic management systems to lessen the need for human monitoring and control.  

 

Development of such systems is accelerating, prompted by the promise of a range of applications, such as unmanned aircraft that could be used to dust crops, monitor traffic, or execute dangerous missions currently undertaken by crewed planes, such as fighting forest fires.  The FAA currently prohibits commercial use of unmanned aircraft without a waiver or special authorization.

 

NASA’s Aeronautics Research Mission Directorate requested that the Research Council convene a committee to develop a national research agenda for autonomy in civil aviation. 

 

One critical, crosscutting goal that must be achieved before increasingly autonomous aircraft and other systems can reach their full potential is ensuring that they will perform with the high level of safety and reliability expected of civil aviation systems, says the report. It identifies specific technological, regulatory, and other barriers that must be overcome in order to reach that goal.

 

·         Technological barriers include the inherent difficulty associated with characterizing and predicting the behavior of systems that can adapt to changing conditions. This poses a particular challenge in engineering increasingly autonomous unmanned aircraft to be compatible with already-existing air traffic management systems and other elements of the national airspace system. Also, the ability of systems to operate independently of human operators is currently limited by the capabilities of machine sensory, perceptual, and cognitive systems. 

 

·      Regulation and certification barriers include the fact that existing processes, criteria, and approaches for certifying aircraft do not adequately address the special characteristics of advanced autonomous systems. In addition, many existing safety standards and requirements, which are focused on ensuring the safety of aircraft passengers and crew, are not well-suited to ensure the safety of unmanned aircraft operations, where the main concern is the safety of people in other aircraft and on the ground.

·         Other barriers include social issues, such as public concerns about privacy and safety, and legal hurdles, such as public policy, reflected in law and regulation.

To help surmount these and other barriers, the report recommends a national research agenda that would involve government agencies, industry, and academia. The committee described eight research projects, considering the following four to be the most urgent and difficult:

 

Behavior of adaptive/nondeterministic systems. Technologies that enable aircraft to adapt to uncertain environments and to learn based on experience will be integral to many advanced autonomous aircraft. As autonomous systems take over more functions traditionally performed by humans, there will be a growing need to incorporate autonomous monitoring and other safeguards to ensure that appropriate operational behavior continues. Research is needed to develop new methods and tools to address the inherent uncertainties in airspace system operations due to factors such as weather and conflicting air traffic and thereby enable advanced autonomous systems to improve their performance and provide greater assurance of safety.

 

Operation without continuous human oversight. Enabling unmanned aircraft to operate for extended periods of time without real-time human oversight will require that the autonomous systems be able to perform certain critical functions currently provided by humans, such as “detect and avoid” and contingency decision-making. Successful development of these systems and technologies depends on understanding how humans perform their roles currently and how to translate these roles to the autonomous system, particularly for high-risk situations.

 

Modeling and simulation.  Modeling and simulation capabilities will play an important role in the development of increasingly autonomous systems because they enable researchers, designers, regulators, and operators to get information about how an aircraft — or one of its systems or components — performs without actually testing it in real life. For example, computer simulations may be able to test the performance of an autonomous aircraft in millions of scenarios in a short timeframe to produce a statistical basis for determining safety risks. The committee recommended the creation of a distributed suite of modeling and simulation modules developed by disparate organizations with the ability to be interconnected or networked; monolithic modeling efforts that are intended to “do it all” and answer all questions posed tend not to be effective.

 

Verification, validation, and certification. The national airspace system’s high levels of safety largely reflect the formal requirements imposed by the FAA for verification, validation, and certification of hardware and software and the certification of people as a condition for entry into the system. Extension of these concepts and principles to highly autonomous aircraft and systems is not a simple matter and will require the development of new approaches and tools.

“The barriers we identify and the research agenda we propose to overcome them is a vital next step as we venture into this new era of flight,” said committee co-chair John Lauber, a consultant and former senior vice president and chief product safety officer at Airbus.

 

The study was supported by the National Aeronautics and Space Administration.  The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies.  They are private, independent nonprofit institutions that provide science, technology, and health policy advice under a congressional charter granted to NAS in 1863.  The National Research Council is the principal operating arm of the National Academy of Sciences and the National Academy of Engineering.  For more information, visit http://national-academies.org.  A committee roster follows.

 

Source: http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=18815


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings