Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Research Accelerates Next-Gen Ultra-Precise Sensing Technology

By University of Queensland | June 10, 2016

Share

The mining, navigation, minerals exploration and environmental hydrology sectors are set to benefit from new University of Queensland research into quantum technology.

UQ School of Mathematics and Physics theoretical physicist Dr Simon Haine has demonstrated a technique that can be universally applied to theoretical calculations of matter-wave dynamics and used to improve the sensitivity of measurement devices.

“Until now, there has been no clear way to quantify the sensitivity of these devices, especially when the behaviour of the system is dominated by complicated wave-like dynamics,” Dr Haine said.

“When quantum physics takes over, we can no longer model the movement of atoms by treating them as simple particles. We need to treat them as waves.”

Dr Haine said the research, published in Physical Review Letters, would enable ultra-precise measurements of movement such as accelerations and rotations and of the strength and direction of gravity.

The ultra-precise measurements have applications on land and sea.

“The ability to ultra-precisely measure accelerations and rotations is important for submarines, and by using ultra-precise sensing technology, they can track their movement without needing to reveal their position by surfacing to access the Global Positioning satellites,” he said.

“Similarly, these ultra-precise measurements of gravitational fields can be used by the mining industry to help detect what is beneath the ground.

“Usually, what’s directly below us is rock, but if there is something slightly heavier (such as iron ore, gold, or uranium) or something slightly lighter (such as oil or gas), this changes the strength of the gravitational field slightly, and you can detect it.

“Being able to measure gravity very precisely would allow the mining industry to find valuable deposits under the ground just by measuring the gravity from the surface.”

Dr Haine said the findings had potential to benefit environmental hydrology by tracking the movement of water, particularly groundwater beneath Earth’s surface.

“This is useful for environmental science as it allows us to know where water is moving to and from,” he said.

“For example, if there is a drought, the groundwater starts to decrease from a particular area.

“It also allows us to track the growth or reduction in glaciers and polar ice caps through very precise measurements of the gravitational field.”


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings