Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Research Work On Peregrine Falcons Inspires Future Aircraft Technologies

By Phys.org | March 23, 2017

Share

Scientists at BAE Systems and City, University of London have revealed how research work on how falcons fly is inspiring new technologies for aircraft that could contribute to their safety in the air, aerodynamics and fuel efficiency. The technologies could be applied within the next 20 years.

The scientists have developed several concepts following research into how the peregrine falcon – the world’s fastest bird – is able to stay in control and airborne at speeds of up to 200mph, even in high winds. The technologies being developed include ‘sensory feathers’ – 3-D-printed polymer ‘hair’ filaments which would act like sensors on the body of an aircraft, providing an early warning system if it began to stall. Similarly, more densely packed passive polymer filaments may also be capable of changing the airflow very close to the surface of the aircraft which could reduce ‘drag’ on the aircraft wing-skin. Aerodynamic drag ultimately slows aircraft in flight.

A further technology has been inspired by the falcon’s ability to stabilise itself after swooping or landing by ruffling its feathers. Small flexible or hinged flaps on an aircraft could allow the wing to manoeuvre quickly and land more safely at lower speeds. The added safety margin gained using this approach could allow future aircraft of a more compact design or to carry more fuel. In addition, the research so far has shown that the flaps could potentially lower aircraft noise pollution.

Professor Christoph Bruecker from City’s Aeronautical Engineering department, said: “The peregrine falcon is the world’s fastest bird, able to dive for prey at incredibly steep angles and high velocities. The research work has been truly fascinating and I am sure it will deliver some real innovation and benefits for the aerospace sector.”

Professor Clyde Warsop, a specialist in Aerodynamic Flow Control from our military aircraft business based at Filton in Bristol and Warton in Lancashire added: “Working with Professor Christoph Bruecker and his team at City, we’ve investigated how we could apply the unique abilities of the peregrine falcon to aircraft. Bio-inspiration is not a new concept; many technologies that we use every day are increasingly inspired by animals and nature.”


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings