Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Researchers Outline the Current State of Potassium-Ion Battery Technology

By Bob Yirka , Phys.org | May 13, 2019

Share

A trio of researchers with the University of Wollongong, in Australia, has published an outline of the current state of potassium-ion battery technology. In their Review piece published in the journal Science Advances, Wenchao Zhang, Yajie Liu, and Zaiping Guo highlight the current roadblocks that are preventing widespread use of the battery technology and possible workarounds for them.

Lithium-ion batteries have proven to be very useful, particularly in recent times as they are used to power a wide range of devices—from smartphones to electric cars. But lithium is rather rare, which means costs for it is going to go up as supplies tighten. For that reason, scientists have been searching for an alternative. One alternative that has been getting a lot of attention of late is potassium-ion—it is plentiful and cheap. But it also has five main roadblocks, the researchers note.

The first roadblock is low diffusion, which means the potassium ions move slowly through a solid electrode. The researchers suggest that advances in nanomaterials and nanostructures may lead to ways to solve this problem.

The second roadblock has to do with the changes in volume that potassium undergoes as it first accepts a charge and then as it releases it. Repeated cycles lead to breakdown of the material, which results in the development of dead areas and ultimately, battery failure. Possible workarounds include using nanoparticle clusters.

The third problem involves the side reactions that take place that can lead to degradation. The researchers expect that additives will soon be found to prevent them.

The fourth problem is the growth of dendrites that can lead to short circuits. Again, the researchers suggest that the introduction of the right solvents should be able to prevent them from occurring.

And finally, the fifth problem is poor heat dissipation, which can result in very hot batteries or even thermal runaway. The researchers suggest that study of electrode materials, cell configuration and electrolytes should at some point lead to a way to solve the problem.

The researchers conclude by suggesting that the problems inherent with using potassium in batteries do not appear to be insurmountable, but acknowledge that it could take as long as 20 years to figure them all out.


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings