Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Researchers Use X-Rays to Understand the Flaws of Battery Fast Charging

By Jared Sagoff, Argonne National Laboratory | February 12, 2019

Share

While gas tanks can be filled in a matter of minutes, charging the battery of an electric car takes much longer. To level the playing field and make electric vehicles more attractive, scientists are working on fast-charging technologies.

Fast charging is very important for electric vehicles,” said battery scientist Daniel Abraham of the U.S. Department of Energy’s (DOE) Argonne National Laboratory. ?”We’d like to be able to charge an electric vehicle battery in under 15 minutes, and even faster if possible.”

“By seeing exactly how the lithium is distributed within the electrode, we’re gaining the ability to precisely determine the inhomogeneous way in which a battery ages.”—Daniel Abraham, Argonne battery scientist

The principal problem with fast charging happens during the transport of lithium ions from the positive cathode to the negative anode. If the battery is charged slowly, the lithium ions extracted from the cathode gradually slot themselves between the planes of carbon atoms that make up the graphite anode—a process known as lithium intercalation.

But when this process is sped up, lithium can end up depositing on the surface of the graphite as metal, which is called lithium plating. ?”When this happens, the performance of the battery suffers dramatically, because the plated lithium cannot be moved from one electrode to the other,” Abraham said.

According to Abraham, this lithium metal will chemically reduce the battery’s electrolyte, causing the formation of a solid-electrolyte interphase that ties up lithium ions so they cannot be shuttled between the electrodes. As a result, less energy can be stored in the battery over time.

To study the movement of lithium ions within the battery, Abraham partnered with postdoctoral researcher Koffi Pierre Yao and Argonne X-ray physicist John Okasinski at the laboratory’s Advanced Photon Source, a DOE Office of Science User Facility. There, Okasinski essentially created a 2Dimage of the battery by using X-rays to image each phase of lithiated graphite in the anode.

By gaining this view, the researchers were able to precisely quantify the amount of lithium in different regions of the anode during charging and discharging of the battery. 

In the study, the scientists established that the lithium accumulates at regions closer to the battery’s separator under fast-charging conditions.

“You might expect that just from common sense,” Abraham explained. ?”But by seeing exactly how the lithium is distributed within the electrode, we’re gaining the ability to precisely determine the inhomogeneous way in which a battery ages.”

To selectively see a particular region in the heart of the battery, the researchers used a technique called energy dispersive X-ray diffraction. Instead of varying the angle of the beam to reach particular areas of interest, the researchers varied the wavelength of the incident light.

By using X-rays, Argonne’s scientists were able to determine the crystal structures present in the graphite layers. Because graphite is a crystalline material, the insertion of lithium causes the graphite lattice to expand to varying degrees. This swelling of the layers is noticeable as a difference in the diffraction peaks, Okasinski said, and the intensities of these peaks give the lithium content in the graphite.

While this research focuses on small coin-cell batteries, Okasinski said that future studies could examine the lithiation behavior in larger pouch-cell batteries, like those found in smartphones and electric vehicles.

A paper based on the study, ​”Quantifying lithium concentration gradients in the graphite electrode of lithium-ion cells using operando energy dispersive X-ray diffraction,” appeared in the January 9 online issue of Energy and Environmental Science.

 


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings