Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Robots May Need Lizard-Like Tails for ‘Off-Road’ Travel

By University of Queensland | September 26, 2018

Robots may one day tackle obstacles and traverse uneven terrains thanks to collaborative research analysing the motion of lizards.

The study, which featured a University of Queensland researcher, used a slow motion camera to capture the nuanced movement of eight species of Australian agamid lizards that run on two legs—an action known as ‘bipedal’ movement.

UQ School of Biological Sciences researcher Nicholas Wu said the study’s findings challenged existing mathematical models based on the animals’ movement.

“There was an existing understanding that the backwards shift in these lizards’ centre of mass, combined with quick bursts of acceleration, caused them to start running on two legs at a certain point,” he said.

“It’s just like a motorcycle driver doing a ‘wheelie’.

“What we found though is that some lizards run bipedally sooner than expected, by moving their body back and winging their tail up.

“This means that they could run bipedally for longer, perhaps to overcome obstacles in their path.”

Lead author Christofer Clemente from the University of the Sunshine Coast said these results may have important implications for the design of bio-inspired robotic devices.

The researchers’ lizard ‘racetrack’, ready to capture the magic of bipedal movement. Credit: The University of Queensland

“We’re still teasing out why these species have evolved to run like this in the first place, but as we learn more, it’s clear that these lessons from nature may be able to be integrated into robotics,” Dr. Clemente said.

“It’s been suggested that this movement might have something to do with increasing vision in moments of urgency, by elevating the head at the same time and helping to navigate over obstacles.

“Indeed, bipedalism would be advantageous for robots in specific habitats, for example, on open grasslands where, in nature, many bipedal running agamids are found.

“If obstacle negotiation is indeed improved with bipedal locomotion, then we have shown how the tail and body can be moved to enable it sooner and for longer.

“Maybe adding a tail to robots can help them go ‘off-road’ sooner.”

The research is not only looking to the future, but to the past, by helping explain the evolution of bipedalism in dinosaurs and how they could have transitioned from walking on four legs to two legs.

You Might Also Like


Filed Under: Rapid prototyping, Robotics • robotic grippers • end effectors

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.