Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Satellites Paint A Detailed Picture Of Maritime Activity

By ESA | January 22, 2018

Share

ESA has helped coastal authorities to track up to 70% more ships and pick up nearly three times more ship positions via satellite than was possible before.

Large cargo vessels and passenger ships are required to carry Automatic Identification System equipment. It transmits the course and speed as well as identification and position information to other vessels and shore stations.

Originally developed to prevent collisions, it now also tracks ships to help prevent pollution, aid in the movement of dangerous goods, and promote routine surveillance.

The Norwegian Coastal Administration is using the information to manage the national coast and waters for safety, emergency and transport planning.

Advanced receivers, developed by Kongsberg Seatex in Norway with support from ESA, were launched aboard two NorSat satellites last year.

In their first four months of operation, the receivers significantly improved the detection of identification signals.

Satellites increase the visibility range of these messages from about 74 km at sea level to 2500 km from low orbit, meaning that many more ships can be seen at any one time.

In areas with heavy maritime traffic the number of messages sent by ships can be so high that they jam the satellite receiver. The solution is a new type of message that is more easily picked up by satellites and suffers less interference from other messages.

Tracking more ships by satellite. (Image Credit: Norwegian Defence Research Establishment)

Carsten Tobehn, leading ESA’s involvement, commented: “The advanced receiver was developed using the latest commercial off-the-shelf components. The complex hardware permits more sophisticated software processing, bringing significant improvements in picking up the messages.”

The two microsatellites hosting the payloads are owned by the Norwegian Space Centre and are being operated by Statsat.

Ivar Spydevold, CEO at Statsat, added: “The total number of messages from the NorSat receivers typically reach 2.5 million per day. This is nearly three times more than the previous receivers on AISSat-1 and 2, which together achieved about 900 000 per day.”


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings