Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Scientists at DGIST Develop Polariton Nano-Laser Operating at Room Temperature

By DGIST (Daegu Gyeongbuk Institute of Science and Technology) | May 21, 2019

Share

A room temperature polariton nano-laser has been demonstrated, providing the crucial path of related research such as polariton physics at the nanoscale and also applications in quantum information systems. The research was published in the journal, Science Advances.

DGIST announced on May 8 that a polariton nano-laser operating at room temperature was developed by Professor Chang-Hee Cho’s team in the Department of Emerging Materials Science, in collaboration with Professor Seong-Ju Park at GIST and Professor Ritesh Agarwal at University of Pennsylvania. When an excitation of material by creating Coulomb-bound states of electron-hole pairs (excitons) strongly interacts with photons, a macroscopic quantum state of exciton-polaritons is formed and gets advantages of both the light and the matter, resulting in very energy-efficient coherent light sources, called ‘polariton lasers’. The polariton laser is drawing much attention as the next generation laser technology because it can operate at ultralow power. However, its development has been limited due to the difficulties in controlling thermal stability of excitons, especially in nanoscale devices.

To overcome such limitation, the research team used ‘quantum well’ which was named to mean a space that electrons fall easily. Research Fellow Dr. Jang-Won Kang at DGIST integrated a quantum well on the sidewall of nanostructure semiconductor and succeeded in maintaining thermally stable excitons even at room temperature, otherwise they are stable only at very low temperatures.

Furthermore, the quantum well structure contributed to the formation of more efficient and stable exciton-polariton states than before by strengthening the coupling of exciton and light inside the nanostructure semiconductor. This became solid foundations for Professor Chang-Hee Cho’s team to develop the polariton nano-lasers, which are stable at room temperature and operate at only 1/10th power of existing nano-lasers.

Professor Chang-Hee Cho stated that “Since the new nanostructure semiconductor can boost the properties of excitons and thus the exciton-polaritons, we were able to develop the polariton nano-lasers that can operate at room temperature using this technology. Especially, we are very happy because we can now contribute to building a platform to study the physical phenomena related to the exciton-polaritons at room temperature.”


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings