Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Scientists Catch Light Squeezing And Stretching Next-Gen Data Storage Material

By Manuel Gnida, SLAC National Accelerator Laboratory | January 30, 2018

Share

Scientists at the Department of Energy’s SLAC National Accelerator Laboratory have seen for the first time how atoms in iron-platinum nanoparticles – a next-generation material for magnetic data storage devices – respond extremely rapidly to brief laser flashes. Understanding these fundamental motions could potentially lead to new ways of manipulating and controlling such devices with light.

Combining snapshots from two world-leading ultrafast atomic-resolution “cameras” at SLAC – the Linac Coherent Light Source (LCLS) X-ray laser and an apparatus for ultrafast electron diffraction (UED) – the team showed that the laser flashes demagnetized the iron-platinum particles within less than a trillionth of a second, causing atoms in the material to move closer together in one direction and move further apart in another.

The results also provide the first atomic-level description of the mechanical strain, known as magnetostriction, occurring in magnetic materials when the magnetization is changed. The phenomenon manifests itself in many ways, including the electric hum of transformers. Before the study, published today in Nature Communications, researchers had assumed that these structural changes happen relatively slowly. However, the new data suggest that ultrafast processes could play an important role.

“Previous models of the properties of iron-platinum nanoparticles did not consider these extremely fast and fundamental atomic motions,” says Hermann Dürr, the study’s principal investigator from the Stanford Institute for Materials and Energy Sciences (SIMES), which is jointly operated by SLAC and Stanford. “Although we don’t yet understand the full ramifications of these processes, including them in our calculations could open up new pathways for the development of future data storage technologies.”  

Pushing the Limits of Magnetic Data Storage

Magnetic storage devices are widely used to record information produced in virtually all areas of our digital world, and they are believed to remain crucial data storage solutions for the foreseeable future. Faced with ever growing amounts of global data volumes, hardware engineers are aiming to maximize the density with which these media can store information.

However, current technologies are coming close to their technical limits. Today’s hard disk drives, for example, can reach storage densities of several hundred billion bits per square inch, and similar future devices aren’t expected to exceed much more than a trillion bits per square inch. New developments are required to take magnetic data storage to the next level.

“A very promising approach that could take us there is heat-assisted magnetic recording in hard drives using nanosized grains of materials like iron-platinum,” says Eric Fullerton, director of the Center for Memory and Recording Research at the University of California, San Diego, and a co-author of the new study. “In this method, the information is encoded with a nanofocused laser and a magnetic field, or possibly even a laser alone, that switch the magnetization of the nanoparticles. These next-generation drives, which can have much larger storage densities, are already being tested in industry and could soon become commercially available.”


Filed Under: M2M (machine to machine)

 

Related Articles Read More >

Part 6: IDE and other software for connectivity and IoT design work
Part 4: Edge computing and gateways proliferate for industrial machinery
Part 3: Trends in Ethernet, PoE, IO-Link, HIPERFACE, and single-cable solutions
Machine Learning for Sensors

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings