Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Scientists Create Holograms with Neutron Beams

By Brooks Hays, United Press International | October 25, 2016

Researchers have for the first time managed to create a hologram using neutron beams instead of lasers. The new neutron beam holograms reveal details about the insides of solid objects, a feat impossible for laser holograms.

Unlike a photograph, which simply records the light reflected through a lens and onto a sensor, a hologram is a recording of a light field.

Scientists typically create a hologram by shining a laser on an object and recording the interference pattern created as the light waves collide with each other as they bounce of an object. The method allows for a more detailed rendering of an object — the reason why holograms can showcase an image in 3D.

Unfortunately, laser holograms can’t see through an object and record details about its interior, but neutron beams can.

Scientists already use neutron beams to study the insides of new materials. While adept at penetrating objects, neutron beams aren’t all that precise, and don’t render very detailed images. Neutron beam data is usually translated visually as a graph — a roughly approximation of an object’s inner structure.

Recently, researchers at the National Institute of Standards and Technology developed a way render greater light field details from neutron beams. When scientists passed neutron beams through an aluminum cylinder with spiral nanostructures etched into its cross section, they were able to impart a unique twist to the beam. Each individual neutron underwent a phase change and released details necessary to form a hologram.

When combined with an interferometer, a sensor that measures interference patterns, the scientists were able to use neutron beams and their aluminum cylinder to create holograms revealing the inner details of objects.

Scientists detailed the process in a new paper published this week in the journal Optics Express.

“Other techniques measure small features as well, only they are limited to measuring surface properties,” Michael Huber, a scientists in NIST’s Physical Measurement Laboratory, said in a news release. “This might be a more prudent technique for measuring small, 10-micron size structures and buried interfaces inside the bulk of the material.”

You Might Also Like


Filed Under: Rapid prototyping

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.