Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Scientists Discover What Extraordinary Compounds May Be Hidden Inside Uranus, Neptune

By Moscow Institute of Physics and Technology | September 7, 2016

Share

Using computer modeling, chemists from MIPT and Skoltech (the Skolkovo Institute of Science and Technology) have found out which molecules may be present in the interiors of Uranus, Neptune, and the icy satellites of the giant planets. The scientists discovered that at high pressures, which are typical for the interiors of such planets, exotic molecular and polymeric compounds are formed. These compounds include carbonic acid and orthocarbonic acid, the latter also known as ‘Hitler’s Acid’. The results of the study have been published in the journal Scientific Reports.

“The smaller gas giants — Uranus and Neptune — consist largely of carbon, hydrogen and oxygen. We have found that at a pressure of several million atmospheres unexpected compounds should form in their interiors. The cores of these planets may largely consist of these exotic materials,” says the study’s lead author Artem Oganov, professor of Skoltech and the head of MIPT’s Computational Materials Discovery Lab.

A team led by Professor Oganov developed the world’s most universal and powerful algorithm for crystal structure and compound prediction — USPEX (Universal Structure Predictor: Evolutionary Xtallography). In recent years, scientists have used this algorithm to discover several substances that are ‘forbidden’ in classical chemistry and that may be stable at high pressures. These include a number of previously unknown variants of salt — Na3Cl, NaCl3, NaCl7 and even Na3Cl2 andNa4Cl3, as well as exotic new oxides of magnesium, silicon and aluminium which may exist in the interiors of super-Earths.

Now Oganov and his co-author Gabriele Saleh from MIPT have decided to study the chemical behaviour of the carbon-hydrogen-oxygen system under high pressure. “This is an extremely important system because all organic chemistry ‘rests on’ these three elements, and until now it had not been entirely clear how they behave under extreme pressures and temperatures. In addition, they play an essential role in the chemistry of the giant planets,” says Oganov.

The scientists knew that under atmospheric pressure all compounds of carbon, hydrogen, and oxygen, except for methane, water, and carbon dioxide, are thermodynamically unstable. With an increase in pressure, water and carbon dioxide remain stable, but at pressures above 93 gigapascals (0.93 million atmospheres)methane begins to decompose forming heavy hydrocarbons — ethane, butane, and polyethylene. At a lower pressure — approximately 4 GPa — methane and molecular hydrogen interact, forming co-crystals (where two molecules together create one crystal structure), and at 6 GPa, hydrates — CO-crystals made of methane and water — are formed. To put this into A context, the pressure at the bottom of the Mariana Trench(the deepest part of the world’s oceans) is 108.6 megapascals, which is one thousand times lower.

Oganov and Saleh took on the task of finding all stable compounds in the range up to 400 GPa (around 4 million atmospheres) and discovered several new substances. These included a clathrate (inclusion compound, a type of co-crystal) of molecular hydrogen and methane 2CH4:3H2, which is stable in the pressure range 10-215 GPa.

The scientists also found that at a pressure above 0.95 GPa (approximately 10,000 atmospheres), carbonic acid (H2CO3) becomes thermodynamically stable. This is very unusual for a substance that is highly unstable under normal conditions — strong acids are needed for its synthesis and it can only exist in a vacuum at very low temperatures, the authors write.

“It is possible that the cores of Neptune and Uranus may contain significant amounts of a polymer of carbonic acid and orthocarbonic acid,” says Oganov.


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings