Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Scientists Trigger Superconductivity in Non-Superconductive Materials

By Brooks Hays, United Press International | November 1, 2016

In the 1970s, physicists proposed a theory that superconductivity could be induced at the point where two different non-superconductive materials are enjoined, the interface.

Several decades later, scientists have for the first time successfully demonstrated the concept. The breakthrough promises to propel the commercial viability of superconductors.

“Superconductivity is used in many things, of which MRI, magnetic resonance imaging, is perhaps the best known,” Paul C.W. Chu, chief scientist at the Texas Center for Superconductivity at the University of Houston, said in a news release.

Superconductors, unlike semiconductors, carry electricity without resistance. But superconductors must be super-cooled, which requires a lot of energy and makes the technology quite expensive.

The latest research proves it is possible to raise the “critical temperature” at which non-superconducting materials become a superconductor. Researchers were able to induce superconductivity in the non-superconducting compound calcium iron arsenide.

As researchers explained in a new paper on the breakthrough — published in the journal PNAS — the key to inducing superconductivity is to “take advantage of artificially or naturally assembled interfaces.”

Superconductivity at a higher critical temperature can be “induced by antiferromagnetic/metallic layer stacking,” researchers wrote.

In experiments aimed at validating a decades-old theory, researchers exposed undoped calcium iron arsenide compounds to temperatures of negative 350 degrees Centigrade. The process, called annealing, causes the material to form two phases — one “converted” and one “annealed,” each featuring its own uniquely augmented internal structure.

Researchers confirmed superconductivity at the interface where the two phases coexist.

Negative 350 degrees Centigrade is still pretty low, researchers admit, but it is a step — a promising one — in the right direction.

You Might Also Like


Filed Under: Materials • advanced

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.