Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Sea urchins may be key to developing lightweight engineered cellular materials

By Paul Heney | December 26, 2018

Share

In the ongoing search for strong, lightweight materials, researchers are looking at sea urchins, which have spines made of chalk, and are generally brittle. Ironically, the highly complex three-dimensional structure of sea urchin spines is 70% to 80% porous, and thus creates an overall stable, strong structure.

Studying the sea urchin is part of a $540,000 National Science Foundation grant being investigated by Ling Li, assistant professor of mechanical engineering in Virginia Tech’s College of Engineering. The research seeks to develop methods for acquiring, handling, processing, extracting, and evaluating the computational data for a hierarchical structure in order to integrate the information with 3D data and testing to develop engineered cellular materials.

By using design rules gathered from studying biological systems and inputting the rules into the design of bio-inspired lightweight ceramic materials, Li hopes the information can be applied to creating lightweight panels and other components for a variety of industrial purposes.

“I can see this information being applicable to panels, structural support, and armor to provide impact and blast protection. The design is very damage tolerant and does not fail catastrophically,” said Li. “We want to understand how nature designs lightweight materials with brittle components and we are trying to understand the 3D architecture of the sea urchin spine’s structure to see if we can determine how the structure helps achieve high strength and damage tolerance given the inherent weakness of the chalk it’s made from.”

Working with co-investigator Yunhui Zhu, an assistant professor with the Bradley Department of Electrical and Computer Engineering, the team will use a synchrotron tomography technique and mathematical tools developed by the Argonne National Laboratory to obtain high-resolution 3-D volumetric data to determine how the porous network is designed in terms of connections, arrangements, and orientation.

“The project is based on characterizing and understanding the internal structure of the sea urchin spine to find out why it’s so strong,” Li said. “Sea urchin spines have been shown to perform similarly to the best ceramic cellular materials people have made in the lab in terms of relative strength.”

One of the differences between man-made and natural cellular structures is the nonsymmetrical formation of cellular struts and nodes, which also vary in thickness and orientation gradually at different locations.

“Most of our current 3D printed materials are based on idealized geometries, such as cylindrical beams with a constant cross-sectional area, which may contribute to catastrophic failure behavior in some printed ceramic solids,” said Li. “Looking at sea urchins, we see curved morphologies in stark contrast to 3D printed structures. By studying these, we hope to learn how to input these natural designs into our laboratory-created materials.”

 


Filed Under: TECHNOLOGIES + PRODUCTS, Design World articles, Green engineering

 

About The Author

Paul Heney

Paul J. Heney, the VP, Editorial Director for Design World magazine, has a BS in Engineering Science & Mechanics and minors in Technical Communications and Biomedical Engineering from Georgia Tech. He has written about fluid power, aerospace, robotics, medical, green engineering, and general manufacturing topics for nearly 25 years. He has won numerous regional and national awards for his writing from the American Society of Business Publication Editors.

Related Articles Read More >

Hirschtick on the cloud, CAD, and the future
china-manufacturing-future-image
Is China’s manufacturing future in trouble?
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings