Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Self-healing paint could halt rust on military vehicles

By atesmeh | March 19, 2014

Share

 A new additive could help military vehicles, including the Marine Corps variant of the Joint Light Tactical Vehicle (JLTV), heal like human skin and avoid costly maintenance as a result of corrosion.

Developed by The Johns Hopkins University Applied Physics Laboratory in partnership with the Office of Naval Research (ONR), polyfibroblast allows scratches forming in vehicle paint to scar and heal before the effects of corrosion ever reach the metal beneath.

“Corrosion costs the Department of the Navy billions of dollars each year,” said Marine Capt. Frank Furman, who manages logistics research programs for ONR’s Expeditionary Maneuver Warfare and Combating Terrorism Department. “This technology could cut maintenance costs, and, more importantly, it could increase the time vehicles are out in the field with our Marines.”

Polyfibroblast is a powder that can be added to commercial-off-the-shelf paint primers. It is made up of microscopic polymer spheres filled with an oily liquid. When scratched, resin from the broken capsules forms a waxy, water-repellant coating across the exposed steel that protects against corrosion.

While many self-healing paints are designed solely for cosmetic purposes, polyfibroblast is being engineered specifically for tactical vehicles used in a variety of harsh environments.

“We don’t care if it’s pretty,” said Dr. Jason Benkoski, senior scientist at the university lab and lead researcher on the project. “We only care about preventing corrosion.”

From rainstorms to sunlight, tactical vehicles face constant corrosion threats from the elements. Corrosion costs the Department of the Navy about $7 billion each year. About $500 million of that is the result of corrosion to Marine Corps ground vehicles, according to the most recent Department of Defense reports.

Vehicles transported and stored on ships also are subject to salt spray from the ocean, a leading cause of problems for military hardware. In one laboratory experiment, polyfibroblast showed it could prevent rusting for six weeks inside a chamber filled with salt fog.

“We are still looking into how to make this additive even more effective, but initial results like that are encouraging,” said Scott Rideout, deputy program manager, Light Tactical Vehicles, Program Executive Officer (PEO) Land Systems, which is overseeing continued development on polyfibroblast for potential use on the Marine Corps variant of the Joint Light Tactical Vehicle. “Carry that out of the lab and into the inventory, and that translates to improved readiness and big savings.”

The research and development of polyfibroblast underscores the Marine Corps’ commitment to be “modernized with equipment and logistics that expand expeditionary capability and preserve our ability to operate from the sea” as stated in the Marine Corps Vision and Strategy 2025.

Development of polyfibroblast began in 2008 and continued through the succession of three ONR program managers, eventually culminating in promising field and lab tests and a transition to PEO Land Systems.

“To go from nothing to deployment in five years would be quite extraordinary,” Benkoski said. “This progress has a lot to do with ONR’s close relationship with PEO Land Systems and both organizations’ willingness to let me carry out the research in accordance with our shared vision.”

Original release: http://www.onr.navy.mil/Media-Center/Press-Releases/2014/Self-Healing-Paint-Polyfibroblast-JLTV.aspx


Filed Under: Aerospace + defense

 

Related Articles Read More >

Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design
Air Force Jet
How drones are advancing metrology for fighter jets

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

April 11, 2022
Going small with 3D printing
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings