Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Sensor Fusion and Tracking Toolbox

By MathWorks | December 14, 2018

Share

MathWorks today introduced Sensor Fusion and Tracking Toolbox, which is now available as part of Release 2018b. The new toolbox equips engineers working on autonomous systems in aerospace and defense, automotive, consumer electronics, and other industries with algorithms and tools to maintain position, orientation, and situational awareness. The toolbox extends MATLAB based workflows to help engineers develop accurate perception algorithms for autonomous systems.

Engineers working on the perception stage of autonomous system development need to fuse inputs from various sensors to estimate the position of objects around these systems. Now, researchers, developers, and enthusiasts can use algorithms for localization and tracking, along with reference examples within the toolbox, as a starting point to implement components of airborne, ground-based, shipborne, and underwater surveillance, navigation, and autonomous systems. The toolbox provides a flexible and reusable environment that can be shared across developers. It provides capabilities to simulate sensor detections, perform localization, test sensor fusion architectures, and evaluate tracking results.

“Algorithm designers working on tracking and navigation systems often use in-house tools that may be difficult to maintain and reuse,” said Paul Barnard, Marketing Director – Design Automation, MathWorks. “With Sensor Fusion and Tracking Toolbox, engineers can explore multiple designs and perform ‘what-if analysis’ without writing custom libraries. They can also simulate fusion architectures in software that can be shared across teams and organizations.”

Sensor Fusion and Tracking Toolbox includes:

  • Algorithms and tools to design, simulate, and analyze systems that fuse data from multiple sensors to maintain position, orientation, and situational awareness
  • Reference examples that provide a starting point for airborne, ground-based, shipborne, and underwater surveillance, navigation, and autonomous systems
  • Multi-object trackers, sensor fusion filters, motion and sensor models, and data association algorithms that can be used to evaluate fusion architectures using real and synthetic data
  • Scenario and trajectory generation tools
  • Synthetic data generation for active and passive sensors, including RF, acoustic, EO/IR, and GPS/IMU sensors
  • System accuracy and performance standard benchmarks, metrics, and animated plots
  • Deployment options for simulation acceleration or desktop prototyping using C-code generation


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings