Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Small Packages To Test Big Space Technology Advances

By NASA Jet Propulsion Laboratory | May 23, 2018

This weekend, when the next cargo resupply mission to the International Space Station lifts off from NASA Wallops Flight Facility in Virginia, it will be carrying among its supplies and experiments three cereal box-sized satellites that will be used to test and demonstrate the next generation of Earth-observing technology.

NASA has been increasing its use of CubeSats — small satellites based on several configurations of approximately 4 x 4 x 4-inch cubes — to put new technologies in orbit where they can be tested in the harsh environment of space before being used as part of larger satellite missions or constellations of spacecraft.

The three CubeSat missions launching on Orbital ATK’s ninth commercial resupply mission represent a broad range of cutting-edge technologies housed in very small packages.

RainCube — a Radar in a CubeSat — is just that: a miniaturized precipitation-studying radar instrument that weighs just over 26 pounds. RainCube is smaller, has fewer components, and uses less power than traditional radar instruments. NASA’s Earth Science Technology Office (ESTO) In-Space Validation of Earth Science Technologies (InVEST) program selected the project to demonstrate that such a diminutive radar can be operated successfully on a CubeSat platform.

This mission marks the first time an active radar instrument has been flown on a CubeSat.

If successful, RainCube could open the door for lower-cost, quick-turnaround constellation missions, in which multiple CubeSats work together to provide more frequent observations than a single satellite.

“A constellation of RainCube radars would be able to observe the internal structure of weather systems as they evolve according to processes that need to be better characterized in weather and climate forecasting models,” said RainCube Principal Investigator Eva Peral of NASA’s Jet Propulsion Laboratory in Pasadena, California.

RainCube will use wavelengths in the high-frequency Ka-band of the electromagnetic spectrum. Ka wavelengths work with smaller antennas (RainCube’s deployable antenna measures at just half a yard, or meter, across) and allow an exponential increase in data transfer over long distances — making RainCube a demonstration in improved communications as well. JPL developed the RainCube instrument, while Tyvak Inc. developed the spacecraft.

CubeSats can also be used to test new subsystems and techniques for improving data collection from space. Radio frequency interference (RFI) is a growing problem for space-based microwave radiometers, instruments important for studying soil moisture, meteorology, climate and other Earth properties. As the number of RFI-causing devices — including cell phones, radios, and televisions — increases, it will be even more difficult for NASA’s satellite microwave radiometers to collect high-quality data.

To address this issue, NASA’s InVEST program funded a team led by Joel Johnson of The Ohio State University to develop CubeRRT, the CubeSat Radiometer Radio Frequency Interference Technology Validation mission. “Our technology,” said Johnson, “will make it so that our Earth-observing radiometers can still continue to operate in the presence of this interference.”

RFI already affects data collected by Earth-observing satellites. To mitigate this problem, measurements are transmitted to the ground where they are then processed to remove any RFI-corrupted data. It is a complicated process and requires more data to be transmitted to Earth. With future satellites encountering even more RFI, more data could be corrupted and missions might not be able to meet their science goals.

Johnson collaborated with technologists at JPL and Goddard Space Flight Center, Greenbelt, Maryland, to develop the CubeRRT satellite to demonstrate the ability to detect RFI and filter out RFI-corrupted data in real time aboard the spacecraft. The spacecraft was developed by Blue Canyon Technologies, Boulder, Colorado.

One of the radiometer-collected weather measurements important to researchers involves cloud processes, specifically storm development and the identification of the time when rain begins to fall. Currently, weather satellites pass over storms just once every three hours, not frequently enough to identify many of the changes in dynamic storm systems. But the development of a new, extremely-compact radiometer system could change that.

NASA’s Earth System Science Pathfinder program selected Steven Reising of Colorado State University and partners at JPL to develop, build, and demonstrate a five-frequency radiometer based on newly available low-noise amplifier technologies developed with support from ESTO. The TEMPEST-D (Temporal Experiment for Storms and Tropical Systems Demonstration) mission will validate the miniaturized radiometer technology and demonstrate the spacecraft’s ability to perform drag maneuvers to control TEMPEST-D’s low-Earth altitude and its position in orbit. The instrument fits into a Blue Canyon Technologies 6U CubeSat — the same size CubeSat as RainCube and CubeRRT.

“With a train-like constellation of TEMPEST-like CubeSats, we’d be able to take time samples every five to 10 minutes to see how a storm develops,” said Reising. This would improve upon the three-hour satellite revisit time, especially when collecting data on tropical storms like hurricanes that can quickly intensify and change.

RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATK’s Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.