Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Space-tested robot inspires medicine and manufacturing uses

By atesmeh | June 30, 2014

Humans doing difficult, repetitive tasks or those who need assistance with movement may soon get a helping hand – literally – thanks to robotic technology developed to serve astronauts in space.

Robonaut, a human-like robot designed by NASA and General Motors (GM), has been on the International Space Station since February 2011. Researchers have been testing the robot’s ability to perform certain tasks to free up human crew time and energy.

“The idea is to help astronauts with dull, dangerous, or dirty tasks,” said Ron Diftler, Ph.D., Robonaut project manager at NASA’s Johnson Space Center in Houston. The ultimate goal is for the robot to perform tasks outside the station, saving the human crew the time and risk of some extravehicular activity, commonly known as spacewalks.

During its development, this astronaut helper sparked ideas for other uses of its technology. These additional uses weren’t apparent when Robonaut was first envisioned but came about through various partnerships and observations along the way.

One inspiration generated the X1, an exoskeleton that could help astronauts remain healthy in space. On Earth, it could restore limb motion for those affected by paraplegia or stroke. To create X1, NASA partnered with the Florida Institute for Human and Machine Cognition (IHMC), which had already developed a lower-extremity exoskeleton to assist those with paraplegia.

“We combined IHMC’s expertise in walking algorithms related to gait pathology with the NASA robotics team’s expertise in actuation and hardware and created a more compact, more capable exoskeleton,” said Christopher Beck, robotics engineer, Oceaneering Space Systems.

One of two prototypes produced is at Johnson; the other is at IHMC. The device, worn over the legs with a harness over the back and around the shoulders, has motorized joints at the hips and the knees and passive joints for sidestepping, turning and pointing, and foot flexing. Someone in a wheelchair can easily put on the device, and its sensor technology provides useful data on its function.

In addition to assisting movement, the exoskeleton can also inhibit it, creating the potential for using it as a resistance exercise device for astronauts on long missions. Astronauts exercise, on average, two hours a day on the station to counter effects of microgravity on the human body, which include decreased bone density and muscular atrophy. Although existing exercise equipment has done an excellent job of maintaining crew health aboard the station, X1’s smaller size and mass will be more suitable on deeper space missions.

X1 can also function as a dynamometer, a device that measures force or torque to quantify changes in muscle strength. Currently, an off-the-shelf dynamometer measures an astronaut’s strength pre- and post-flight. The exoskeleton could be used for these assessments as well as to take measurements during a mission, allowing crew to immediately adapt exercise protocols in response to changes.

Testing of the device as a dynamometer for the knee and ankle has shown promising results. Next steps will likely involve further ground testing and, at some point, a technology demonstration flight experiment on the station.

Another Robonaut spin-off is RoboGlove, a glove with flexible tendons, a tendon drive system, and sensors that measure the grasping force applied by the wearer. The glove can also either assist or resist movement.

A major application of its assistive function could be for spacewalks. “One of the big issues is that extravehicular activity work requires enormous hand strength,” said Lyndon Bridgwater, senior robotics engineer at Johnson. “Due to pressurization of the suit, it’s like squeezing a balloon every time you move your hand. That causes extreme fatigue and even injury. We’re looking at putting the hardware and actuator in the glove itself to provide muscle augmentation for the hand.” Ground testing of this application is scheduled for next year.

Similar applications could help people who have loss or restriction in use of a hand through injury or stroke, and those who do difficult, repetitive tasks at work. For example, installation of car windows is a highly dexterous, fine motor task yet requires high hand strength to hold the heavy glass. Four copies of the glove in multiple sizes are currently in evaluation for these various uses. NASA and GM are looking for commercial partners to cost-effectively mass-produce the glove.

A third spin-off applies the technology to telemedicine. In tests with the Methodist Hospital in Houston, operators guided by a physician were able to use Robonaut to conduct ultrasound-guided venous access, or insertion of a needle into a vein. Someday, it may be possible to use the robot to conduct medical procedures on the space station under remote supervision of a doctor.

“The robot could stabilize an injured individual or do nursing level work, even on Earth,” Diftler said. “That essentially transports a doctor’s skill and presence to somewhere the doctor can’t go or, in an emergency situation, where it would be dangerous for a person to go.”

With all of these uses, the overarching idea is to design robots to assist people, not replace them, the researchers stress. In other words, to provide a helping hand for the human mission, in space or on Earth.

Original release: http://www.eurekalert.org/pub_releases/2014-06/nsc-sri062714.php

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.