Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Speech Recognition Technology for Air Traffic Controllers

By CORDIS | September 25, 2018

The popularity of air transport continues to grow, placing an even greater workload on air traffic controllers (ATCOs). Their predicament can be improved through an automatic speech recognition system closely integrated with an arrival manager developed by EU and SESAR funded researchers.

One of the greatest hurdles to introducing higher levels of automation in air traffic management (ATM) is the intensive use of voice radio communication to convey air traffic control (ATC) instructions to pilots. Automatic speech recognition, which converts human speech into texts, can provide a solution to significantly reduce ATCOs workloads and increase ATM efficiency.

The Horizon 2020 funded MALORCA project aimed to reduce the development and maintenance costs of assistant-based speech recognition (ABSR) by using machine learning instead of manual software programming.This initiative was funded within the framework of the SESAR Joint Undertaking, a public-private partnership set up to modernise Europe’s ATM system.

Adaptation to local conditions

Modern ATC systems must be safe and efficient while being up-to-date. They therefore require significant input from ATCOs, which is currently captured through keyboard and mouse devices. Modern technologies like Air-Ground data link, which in some instances can replace voice communication, will require even more inputs from ATCOs.

The immense workload of the ATCO can be reduced by ABSR. “Fortunately, automatic speech recognition has reached a level of reliability that is sufficient for implementation into an ATM system,” says project coordinator Hartmut Helmke. “However, we need to reduce the transfer costs of speech recognition systems from one approach area to an other one”.

Currently, several speech recognition modules require a manual adaptation to local needs caused by acoustic and language variabilities such as regional accents, phraseology deviations and local constraints. MALORCA proposed a general, cheap and effective solution to automate this re-learning, adaptation and customisation process. This involves automatically learning local speech recognition and ATCO models from radar and speech data recordings.

MALORCA developed new machine learning tools to automatically learn ATCO behaviour and adapt speech recognition models from data recorded by the Air Navigations Service Providers. Machine learning employs statistical techniques that enable computer systems to ‘learn’ and improve their performance on specific tasks over time by exploiting this data, without being explicitly programmed. This will replace much of the manual effort previously required and reduce costs as machine learning of ABSR models makes adaptation to different airports and maintenance cheaper and faster.

The first step

Project partners used the output of a so-called ‘Arrival Manager’ for Prague and Vienna airports to automatically split the untranscribed training data into positive and negative chunks through specific confidence metrics. This metric was then used in the developed machine learning algorithms to reinforce learning from adaptation data.

In the context of ABSR the Arrival Manager supports the prediction of the ATC commands that are relevant to the current situation. The predicted commands are compared with the output of the speech recogniser. If a command is not predicted it is assumed that speech recognition system has output a wrong command.

The project thus provides the aviation industry with a practical approach for developing and deploying a state-of-the art speech recognition system and integrating it into today’s voice communication systems for air navigation service providers.

The use of machine learning for speech recognition is only the first test case for its wider application in ATM. Its application in ATM can also help to reduce the adaptation and maintenance of other ATM tools. The adaptation for example of a generic Arrival Manager to specific airports could be the next step.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more