Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Spray-Printed Crystals to Move Forward Organic Electronic Applications

By University of Surrey | November 22, 2016

Share

Has the time come to replace traditionally used silicon with printable organic semiconductor inks? University of Surrey scientists believe so, especially for future electronics that need to be flexible, lightweight, wearable and low-cost.

Single crystal semiconductors, such as silicon, have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt at very high temperatures, in special chambers filled with inert gas, using time-consuming and energy intensive processes. A new class of crystalline materials, called organic semiconductors, can also be grown as single crystals, but in a very different way, using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics, targeting numerous applications ranging from field effect transistors and light emitting diodes to medical x-ray detectors and miniature lasers.

New research, published today in Nature Communications, conducted by a team of researchers from the University of Surrey and National Physical Laboratory, demonstrates for the first time a low-cost, scalable spray-printing process to fabricate high-quality isolated organic single crystals. The method is suitable for a wide variety of semiconducting small molecules, which can be dissolved in solvents to make semiconducting inks, and then be deposited on virtually any substrate. The key aspect is in combining the advantages of antisolvent crystallization and solution shearing. The crystals’ size, shape and orientation are then controlled by the spay angle and distance to the substrate, which govern the spray droplets’ impact onto the antisolvent’s surface. These crystals are high quality structures, as confirmed by a combination of characterisation techniques, including polarised optical and scanning electron microscopy, x-ray diffraction, polarised Raman spectroscopy and field-effect transistor tests.

The research has a direct impact on printed electronic applications for flexible circuits, advanced photodetector arrays, chemical and biological sensors, robotic skin tensile sensors, x-ray medical detectors, light emitting transistors and diodes, and miniature lasers

“This method is a powerful, new approach for manufacturing organic semiconductor single crystals and controlling their shape and dimensions,” said Dr Maxim Shkunov from the Advanced Technology Institute at the University of Surrey.

“If we look at silicon, it takes almost 15000C to grow semiconductor grade crystals, while steel spoons will melt at this temperature, and it will fetch a very hefty electric bill for just 1 kg of silicon, same as for running a tea kettle for over 2 days non-stop. And then, you would need to cut and polish those silicon ‘boules’ into wafers.

“We can make single crystals in a much simpler way, entirely at room temperature with a £5 artist spray brush. With a new class of organic semiconductors based on carbon atoms, we can spray-coat organic inks onto anything, and get more or less the right size of crystals for our devices right away.”

Dr Maxim Shkunov, lead author of the research, continued: “The trick is to cover the surface with a non-solvent so that semiconductor molecules float on top and self-assemble into highly ordered crystals. We can also beat silicon by using light emitting molecules to make lasers, for example, – something you can’t do with traditional silicon. This molecular crystals growth method opens amazing capabilities for printable organic electronics.”


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings