Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Studying Midwest Soil Erosion From Space

By Isaac Larsen, University of Massachusetts Amherst | April 23, 2018

Geologist and geochemist Isaac Larsen at the University of Massachusetts Amherst is used to tramping around in the dirt to conduct his soil research, but satellite photos of the Iowa farmhouse where he grew up have added a new dimension to the work, and he now has a grant from NASA to study soils in a whole new way, from space.

An expert in soil production, erosion, human impact and the evolution of the agricultural landscape, Larsen has been awarded a three-year, $265,000 New Investigator Program grant from NASA’s Earth Science Division, which supports innovative research by earth scientists early in their careers.

Erosion reduces soil fertility, Larsen points out, resulting in diminished agricultural production. The cost in the U.S. reaches tens of billions of dollars a year and while many recognize the need to conserve soil, uncertainties remain about how big the problem is.

He says that developing soil loss estimates on large spatial scales is a daunting challenge. “There has been a lot of work on soil erosion on much smaller plots, but taking that information across the landscape is difficult,” he notes. “Using remote sensing as a way to look at the broad scale is promising. We’ll know in very fine detail where soil has been lost.”

Many hilltops around Larsen’s childhood home in Clear Lake, Iowa, have lost all their topsoil and are worn down to glacial till. As he explains, “I could see the erosion from the ground, but it wasn’t until after I’d been trained as a geomorphologist in graduate school that I was able to interpret the patterns of soil color as topsoil loss. I then wondered if the effects of erosion could be seen from space. They can, and looking at the pictures from space shows just how extensive the loss of topsoil is. Once you start looking, you see it all throughout the Midwest.”

“I think we’ll be able to produce robust estimates of the degree of topsoil loss throughout the Midwestern U.S.,” he says. “These are some of the most fertile soils in the world, but we don’t have a good measure of the extent of topsoil loss at present.”

Most of this work will use existing images, Larsen says. He and a graduate student will come up with creative ways to use space-based data to study Earth’s soils not only using public NASA data, but also high-resolution commercial images that NASA and the National Geospatial-Intelligence Agency can make available for research by agreement with private companies.

One goal is to estimate how much topsoil has been lost in the former tallgrass prairie since European settlement in the 1800s, from western Illinois to eastern Nebraska and from Missouri and Kansas north to Iowa, Minnesota and the eastern Dakotas. The researchers will create a map and regional analysis that farmers, extension agents and others can use to identify which areas might benefit from changing farm practices.

Larsen proposes to use high-resolution images to map out the presence and absence of topsoil in areas where images are available from the right time of year – either after fall harvest and before it snows, or after the snow melts and before spring planting. “Because of those narrow windows, we don’t have high resolution images everywhere, but we’ve been able to link the extent of soil loss with high-resolution topographic information from Lidar,” another remote-sensing technique, he adds.

Topsoil loss is reversible, as home gardeners know from adding compost and other soil amendments to their plots. Reversing topsoil loss on the farm- to county-scale requires different approaches, Larsen says, but is well worth the effort.

“If we were to restore the organic, carbon-rich part of the topsoil that is the key to soil fertility and productivity, it would represent a large economic advantage to farmers. Something can definitely be done about it. With very aggressive management you can build the soil back up, and studies suggest you can bring topsoil back in less than a decade using such methods as adopting no-till farming, crop rotations, and planting cover crops,” he adds.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.