When you’re just a few microns long, swimming can be difficult. At that size scale, the viscosity of water is similar to honey, so momentum can’t be relied upon to maintain forward motion.
While microorganisms have evolved ways to swim in spite of these challenges, tiny robots haven’t quite caught up. A team of researchers at the Georgia Institute of Technology has used complex computational models to design swimming micro-robots that could overcome these challenges to carry cargo and navigate in response to stimuli such as light.
When they’re actually built some day, these simple micro-swimmers could rely on volume changes in unique materials known as hydrogels to move tiny flaps that will propel the robots. The micro-devices could be used in drug delivery, lab-on-a-chip microfluidic systems—and even as micro-construction robots working in swarms.
“We believe that our simulations will give experimentalists a reason to pursue development of these micro-swimmers to go beyond what is available now,” said Alexander Alexeev, an assistant professor of mechanical engineering at Georgia Tech. “We wanted to demonstrate the principle of how robots this small could move by determining what is important and what would need to be used to build a real system.”
The simple swimmer designed by Alexeev and collaborators Hassan Masoud and Benjamin Bingham consists of a responsive gel body about ten microns long with two propulsive flaps attached to opposite sides. The responsive gel body would undergo periodic expansions and contractions triggered by oscillatory chemical reactions, oscillating magnetic or electric fields, or by cycles of temperature change. These expansions and contractions—the chemical swelling and de-swelling of the material—would create a beating motion in the rigid propulsive flaps attached to each side of the micro-swimmer. Combined with the movement of the gel body, the beating motion would move the micro-swimmer forward.
The trajectory of the micro-swimmer would be controlled by a flexible steering flap on its front. The flap would be made of a material that deforms based on changes in light intensity, temperature or magnetic field.

Illustration shows the rigid propulsive flaps on each side of the micro-swimmer, while the steering flap on the front is being deformed by a light source. The green cones represent velocity vectors through the middle of the micro-swimmer. (Courtesy of Alexander Alexeev)
“The combination of these flaps and the oscillating body creates a very nice motion that we believe can be used to propel the swimmer,” said Alexeev. “To build a device that is autonomous and self-propelling at the micron-scale, we cannot build a tiny submarine. We have to keep it simple.”
Key to the operation of the micro-swimmer would be the latest generation of hydrogels, materials whose volume changes in a cyclical way. The hydrogels would serve as “chemical engines” to provide the motion needed to move the device’s propulsive flaps. Such materials currently exist and are being improved upon for other applications.
“We are using the state-of-the art in materials science, changing the properties of the material,” explained Masoud, a Ph.D. candidate in the School of Mechanical Engineering. “We have combined the materials with the principles of hydrodynamics at the small scale to develop this new swimmer.”
The computational fluid modeling the researchers used allowed them to study a wide range of parameters in materials, oscillation rates and flexibility. What they learned, according to Alexeev, will give experimentalists a starting point for actually building prototypes of the flexible gel robots.
“We have captured the solid mechanics of the periodically-oscillating body, the fluid dynamics of moving through the viscous liquid, and the coupling between the two,” he said. “From a computational fluid dynamics standpoint, it’s not an easy problem to model at this scale.”
Ultimately, the researchers hope to work with an experimental team to actually build the micro-swimmers. Combining their theoretical work with actual experiments could be a powerful approach to building robots on this size scale.
The researchers envision groups of micro-swimmers carrying cargo through microfluidic chips or other devices. Swarms of them could one day work together as tiny construction robots moving materials to desired locations for assembly. Alexeev estimates that their top speed could be on the order of a few micrometers per second—which should be enough to accomplish their mission.
Georgia Institute of Technology
gtresearchnews.gatech.edu
Filed Under: Design World articles
Tell Us What You Think!