Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

TAGSAM Testing Complete: OSIRIS-REx Prepared to TAG an Asteroid

By NASA | December 3, 2018

On Nov. 14, NASA’s OSIRIS-REx spacecraft stretched out its robotic sampling arm for the first time in space. The arm, more formally known as the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), is key to the spacecraft achieving the primary goal of the mission: returning a sample from asteroid Bennu in 2023.

As planned, engineers at Lockheed Martin commanded the spacecraft to move the arm through its full range of motion – flexing its shoulder, elbow, and wrist “joints.” This long-awaited stretch, which was confirmed by telemetry data and imagery captured by the spacecraft’s SamCam camera, demonstrates that the TAGSAM head is ready to collect a sample of loose dirt and rock (called regolith) from Bennu’s surface.

This image shows the OSIRIS-REx Touch-and-Go Sample Acquisition Mechanism (TAGSAM) sampling head extended from the spacecraft at the end of the TAGSAM arm. The image was obtained by the SamCam camera on Nov. 14, 2018 as part of a visual checkout of the spacecraft’s sample acquisition system. This is a rehearsal image for an observation that will be taken at Bennu during the moment of sample collection to help document the asteroid material collected in the TAGSAM head. There are two witness plate assemblies on the top perimeter of the TAGSAM head, one of which is entirely visible in this image. These witness plates record the deposition of material on the TAGSAM head over the duration of the mission, giving scientists a record of material on the TAGSAM head that is not from Bennu.

“The TAGSAM exercise is an important milestone, as the prime objective of the OSIRIS-REx mission is to return a sample of Bennu to Earth,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson. “This successful test shows that, when the time comes, TAGSAM is ready to reach out and tag the asteroid.”

Years of innovation

Lockheed Martin engineers spent more than a decade designing, building, and testing TAGSAM, which includes an 11-foot (3.35-meter) arm with three articulating joints, a round sampler head at the end of the arm that resembles the air filter in a car, and three bottles of high-pressure nitrogen gas.

This test deployment was a rehearsal for a date in mid-2020 when the spacecraft will unfold the TAGSAM arm again, slowly descend to Bennu’s surface, and briefly touch the asteroid with the sampler head. A burst of nitrogen gas will stir up regolith on the asteroid’s surface, which will be caught in the TAGSAM head. The TAG sequence will take about five seconds, after which the spacecraft will execute small maneuvers to carefully back away from Bennu. Afterward, SamCam will image the sampler head, as it did during the test deployment, to help confirm that TAGSAM collected at least 2.1 ounces (60 grams) of regolith.

In mid-2020, the OSIRIS-REx spacecraft will use its TAGSAM device to stir up and collect a sample of loose material from asteroid Bennu’s surface. That material will be returned to Earth for study in 2023.

The TAGSAM mechanism was designed for the key challenge unique to the OSIRIS-REx mission: collecting a sample from the smallest planetary body ever to be orbited by a spacecraft. “First-of-its-kind innovations like this one serve as the precursor for future missions to small bodies,” said Sandy Freund, systems engineer manager and Lockheed Martin OSIRIS-REx MSA manager. “By proving out these technologies and techniques, we are going to be able to return the largest sample from space in half a century and pave the way for other missions.”

A month of testing

The unfolding of the TAGSAM arm was the latest and most significant step in a series of tests and check-outs of the spacecraft’s sampling system, which began in October when OSIRIS-REx jettisoned the cover that protected the TAGSAM head during launch and the mission’s outbound cruise phase. Shortly before the cover ejection, and again the day after, OSIRIS-REx performed two spins called Sample Mass Measurements. By comparing the spacecraft’s inertial properties during these before-and-after spins, the team confirmed that the 2.67-pound (1.21-kilogram) cover was successfully ejected on Oct. 17.

A week later, on Oct. 25, the Frangibolts holding the TAGSAM arm in place fired successfully, releasing the arm and allowing the team to move it into a parked position just outside its protective housing. After resting in this position for a few weeks, the arm was fully deployed into its sampling position, its joints were tested, and images were captured with SamCam. The spacecraft will execute two additional Sample Mass Measurements over the next two days. The mission team will use these spins as a baseline to compare with the results of similar spins that will be conducted after TAG in 2020 in order to confirm the mass of the sample collected.

Over the past month, the OSIRIS-REx team conducted a series of tests to ensure that TAGSAM, the spacecraft’s sampling mechanism, is ready to collect a sample from Bennu in 2020. This rehearsal marked the first time since launch that the TAGSAM arm has moved through its full range of motion.

Although the sampling system was rigorously tested on Earth, this rehearsal marked the first time that the team has deployed TAGSAM in the micro-gravity environment of space.

“The team is very pleased that TAGSAM has been released, deployed, and is operating as commanded through its full range of motion.” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has been restrained for over two years since launch, so it is gratifying to see it out of its shackles and performing well.”

OSIRIS-REx is scheduled to arrive at Bennu on Dec. 3. It will spend nearly one year surveying the asteroid with five scientific instruments so that the mission team can select a location that is safe and scientifically interesting to collect the sample.

“Now that we have put TAGSAM through its paces in space and know it is ready to perform at Bennu, we can focus on the challenges of navigating around the asteroid and seeking out the best possible sample site,” said Lauretta.

NASA Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team, the mission’s science observation planning, and data processing. Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

For more information on OSIRIS-REx visit: www.nasa.gov/osiris-rex and www.asteroidmission.org

You Might Also Like


Filed Under: Aerospace + defense, Filters (mechanical) for air + fans

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more