Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Team Evaluates New Data Collection Method After Age-Related Issue

By NASA | October 12, 2016

Mission managers at NASA’s Jet Propulsion Laboratory, Pasadena, California, are evaluating an alternate way to collect and process science data from the Tropospheric Emission Spectrometer (TES) instrument on NASA’s Aura spacecraft following the age-related failure of a critical instrument component. TES is an infrared sensor designed to study Earth’s troposphere, the lowermost layer of Earth’s atmosphere, which is where we live. Launched in July 2004 and designed to fly for two years, the TES mission is currently in an extended operations phase. The remainder of the TES instrument, and the Aura spacecraft itself, are operating as expected, and TES continues to collect science data. TES is one of four instruments on Aura, three of which are still operating.

In August, following a gradual decline in power output, a reference laser within TES was unable to produce sufficient power to generate detectable interferograms. The TES interferograms record patterns of electromagnetic wave interference in Earth’s atmosphere, similar to ripples on a pond. The reference laser functions like a yard stick, measuring the lengths between the troughs in the interferogram. With this knowledge, scientists can determine how much infrared radiation is entering the instrument. Because each gas in Earth’s atmosphere has its own unique thermal infrared signature, or “fingerprint,” these measurements can be used to detect and quantify the composition of gases in the atmosphere.

The TES science team has identified an alternate way to collect and process these laser measurements that uses an internal clock within TES to produce interferograms based upon measurements of time, rather than of space. The team is currently developing and testing algorithms to evaluate the ability of these clock-generated interferograms to substitute for the laser-generated ones.

Development and testing of the algorithms is expected to take at least several months. In the meantime, TES continues to collect and transmit raw measurement data to the TES ground data system, but delivery of science data products to users will be delayed.

TES measures the distribution of gases in Earth’s lower atmosphere. These data advance understanding of the chemistry of the lower atmosphere, interactions between the lower atmosphere and biosphere, and the exchange of gases between Earth’s troposphere and stratosphere.

While TES can detect and measure many chemicals in Earth’s troposphere, its primary mission is to measure ozone. Low levels of ozone are a natural component of the troposphere, but higher levels, usually associated with polluted environments, are dangerous to plants and animals, including humans. The instrument is providing important data on where ozone in the troposphere comes from and how it interacts with other chemicals in the atmosphere. TES data have been used to study the impact of ozone on Earth’s climate, as well as changes in background levels of ozone over the Western United States due to non-local sources of pollution.

Other TES mission research highlights to date include:

  • Studies that validate how pollutants are transported globally from continent to continent
  • Differentiation of “heavy” water vapor from normal vapor, which can be used to track evaporation and precipitation cycles in the atmosphere
  • The first quantification of the greenhouse gas effect of ozone
  • Demonstration of ozone measurements near Earth’s surface, in conjunction with Aura’s ultraviolet Ozone Monitoring Instrument (OMI)
  • Measuring ammonia, a significant source of aerosols, in the lower atmosphere

JPL manages TES for NASA. NASA’s Goddard Space Flight Center, Greenbelt, Maryland, manages the Aura mission for NASA’s Science Mission Directorate, Washington.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.