Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Testing drive systems virtually

By Puja Mitra | September 26, 2024

How will the drive actually behave in the real-life application? For brushless DC-motors from FAULHABER, this question can be answered without any hardware whatsoever. They were recently added as virtual modules to a library and can be integrated into modeled applications using the simulation software Simulink. The simulated behavior serves as an indicator for the real-life situation. It takes just a few clicks to “try out” different drives. This makes the development process much easier.

Let us take a transport drone used in logistics as an example. Its drives need to meet high dynamic demands to enable precise and responsive control of the flying object. They must respond without perceivable delay, smoothly and with precisely defined force. Motors that drive such high-precision applications therefore have to meet very high expectations.

Saves time and reduces risks

The transport drone is just one of many application examples for which simulation of the drive system during the development phase constitutes a valuable tool. What matters here is not only the behavior of the motor, which can be modeled with reasonable effort based on the data sheet parameters. A complete drive system also requires emulation of the sensor system and control. Realistic emulation of these components helps reduce comprehensive trials with physical drives.

FAULHABER is the first provider of high-quality micromotors to offer the possibility of simulating the application situation realistically at an early stage of development. This is supported by a simulation software that is used by many developers all over the world: Simulink offers a so-called block diagram environment with graphical interface in which simulations with virtual models are possible without the need for programming. “Various solutions can be tested quickly and easily in an integrated environment. This allows the development concept to be adapted to the actual application at a very early stage,” explains applications engineer Marc Lux.

Integrating sensor system and control

He himself created the basis for testing FAULHABER drives using Simulink. He compiled a component library in which all brushless DC-motors in the product range are stored together with the matching encoders and Motion Controllers. “A motor consists of an electrical and a mechanical subsystem. The correlations can be described using mathematical equations. In the model, the equations for the subsystems are interconnected, just like the components when assembling a physical motor.”

By modeling typical influences of various sensor systems, it is possible to simulate a realistic speed characteristic. The drive models can also be used by customers to develop their own controllers for actuating brushless FAULHABER motors. Although this is no substitute for tests on physical motors, this model-based method significantly reduces the time and risks associated with development.

For simulation of a controlled drive system with FAULHABER components, the library provides modules for torque, speed and motion control. Motion Controllers of generation 3.0, which include e.g. the models MC 3001, MC 3603 and MC 5005, form the basis. In combination with a motor from the library and a configurable load inertia, the same controller parameters can be determined as those that exist in a physical Motion Controller. By simulating the complete drive system, it is possible to, for example, establish realistic positioning times, adapt the controller parameters or compare the behavior of the drive when different concepts are applied.

Practical toolbox

To make the simulation easy to use, Marc Lux developed a Matlab toolbox. Matlab is a platform for programming and numeric computing. Scripts created using this platform can be used for simulation with Simulink. The virtual toolbox contains, among other things, the various drive models, scripts and tables for calculating parameters for the controllers and motors as well as graphical interfaces for intuitively combining the elements required for the simulation.

The Simulink library has been available online to FAULHABER customers since the beginning of the year. It is intended to supplement existing tools such as the FAULHABER Drive Calculator. It can be used for selecting a drive system as well as for model-based integration into the actual application. Not least, the simulation can also be used for creating a digital twin of the drive and to utilize this twin for advanced features in the context of IoT and Industry 4.0.

For more information, visit faulhaber.com.

You Might Also Like


Filed Under: Drives (dc), Motion control • motor controls, Motors (direct-drive) + frameless motors
Tagged With: faulhaber
 

About The Author

Puja Mitra

Puja Mitra has an MBA in Marketing and HR as well as an MA in Economics. As a Managing Editor, she has experience managing CAD, CAM, and CAE directories. She also handles design, BIM, manufacturing, digital transformation, and computing news. With over 12 years of editing experience, she has a particular interest in content and technical writing.

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
  • Sustainable Practices for a Sustainable World
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.OkNoRead more