Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Testing the James Webb Space Telescope with Radio Waves

By NASA | January 6, 2016

Share

A team of engineers in special clean room suits at NASA Goddard. Seen from left to right: Andy Mentges, Nathan Block, Vaughn Nelson, Rob Houle, John McCloskey, Mark Branch, Rick Jones, Greg Jamroz. Credits: NASA/Chris Gunn

The instruments that will fly aboard NASA’s James Webb Space Telescope not only have to be tough enough to survive in the cold of space, but they also have to work properly in the electromagnetic environment on the spacecraft, so they’re tested for both. Recently, they passed a test for the latter in a very unique room.

Stepping inside NASA’s Electromagnetic Interference or EMI laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland feels like stepping inside a Lady Gaga music video. Inside this white room where conical structures jut out from the walls, a team of engineers clad in “bunny suits” or white suits recently and successfully completed one of the key environmental tests for the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope. 

The ISIM can be considered the eyes and ears of Webb telescope and the purpose of the test was to verify that these eyes and ears will be compatible with the electromagnetic environment on the spacecraft.

Once inside the clean room, the team set up antennae for different tests. Their first task was to measure the electromagnetic emissions from the ISIM in order to assess the likelihood of interference to the rest of the spacecraft. They also illuminated the ISIM with electromagnetic waves in order to assess the likelihood of interference from the rest of the spacecraft.   

These tests must be performed in an anechoic (Latin for “no echo”) chamber. The conical structures jutting out from the walls absorb the electromagnetic energy in order to minimize reflections. As much as a sound booth works to minimize the reflection of sound waves, the anechoic material minimizes reflections of electromagnetic waves so that they don’t bounce back and combine with the original waves, which would disturb the integrity of the test.

“The anechoic material minimizes reflections in order to give maximum control of the test,” said Goddard Chief EMC Engineer John McCloskey. “A metal wall is like a mirror for electromagnetic waves. These walls are designed to absorb the radiated energy and minimize reflections so that we know what we are actually measuring.  We need to know that what we are measuring is actually coming directly from ISIM and not from multiple reflected paths in the room.”

The project schedule allotted 10 days for the test. The team met all the test objectives in 8.5 days. ISIM passed with flying colors.

“Despite a few setbacks, our team finished the test ahead of schedule and beat the deadline,” said John McCloskey. “This test is important because when the James Webb Space Telescope is operating in space and identifying distant galaxies and other astronomical objects, we will have confidence that these are indeed real objects and not blips caused by electromagnetic interference.”

Now, the ISIM is inside the thermal vacuum chamber at NASA Goddard, undergoing its third and final cryogenic test. This test will ensure that Webb telescope’s eyes and ears will work properly in the frigid temperatures of space.

The images from the Webb telescope will reveal the first galaxies forming approximately 13.5 billion years ago. The telescope will also see through interstellar dust clouds to capture stars and planets forming in our own galaxy. At the telescope’s final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of minus 387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been.

The James Webb Space Telescope is the scientific successor to NASA’s Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

For more information about the Webb telescope visit www.nasa.gov/webb or jwst.nasa.gov.

 


Filed Under: Aerospace + defense

 

Related Articles Read More >

Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines
Drone-mounted inspection breaks barriers for F-35
TriStar, a misunderstood failure of design

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings