Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

The Next Sound-Barrier-Busting Passenger Jet Could Be Quietly Supersonic

By Tomas Kellner, GE Reports | June 3, 2016

Share

NASA’s concept of a next-generation supersonic plane. Image credit: NASA

The Concorde was the first and last supersonic jet in passenger service. But that claim comes with a caveat.

The plane could accelerate above the speed of sound only over the ocean. The prospect of noisy sonic booms caused by the plane crossing the sound barrier forced pilots to hold back the throttle above towns and cities after takeoff and before touchdown. “This speed limit actually made the plane much less efficient,” says Karl Wisniewski, director of advanced programs at GE Aviation. “It was designed to fly fast.”

The last Concorde landed in 2003, but NASA and a team of aerospace companies that includes Lockheed Martin and GE Aviation are not finished with supersonic passenger flight. They are developing a supersonic concept plane that could quietly break the sound barrier without setting off a sonic boom and rattling everyone on the ground.

The loud noise is the sound of shockwaves set off by an object traveling through air faster than the speed of sound. “We want to know whether there is a level of sonic boom that’s not bothersome to the population,” says Wisniewski. “We are looking for design features that would minimize the perceived noise on the ground.”

Earlier this year, NASA said it would pay Lockheed about $20 million over the next 17 months to complete a preliminary design for Quiet Supersonic Technology (QueSST). The first flight of a scaled-down version of the “low boom” plane could take place in 2019. Tests over populated areas could come in the next decade, depending on results and funding.

Airbus and Boeing are also looking at new supersonic designs.

NASA said in its news release, “Almost 70 years since Chuck Yeager broke the sound barrier in the Bell X-1 as part of our predecessor agency’s high speed research … we’re continuing that supersonic X-plane legacy with this preliminary design award for a quieter supersonic jet with an aim toward passenger flight.”

A GE-powered F/A-18 fighter Jet is breaking through the sound barrier. Image credit: Getty Images

The Lockheed prototype will use GE’s F404 jet engine, which the company developed for the F/A-18 Hornet fighter planes with top speed of Mach 1.8, or 1.8 times the speed of sound. “We are using an existing supersonic engine for the prototype because we want to keep the costs down as low as possible,” Wisniewski says. “We are helping to integrate the engine with the aircraft.”

GE is supplying the QueSST team with “cycle deck,” software that simulates how the engine operates. “It helps us calculate the thrust and fuel consumption anywhere on the flight map,” Wisniewski says.

In 1947, the Bell X-1B rocket plane piloted by Chuck Yeager accelerated to 700 mph, or 1.06 Mach, and became the first aircraft to cross the sound barrier. The plane, which was powered by a rocket engine, was drop-launched from Superfortress bombers. Image credit: NASA

Along with NASA, GE Aviation is one of the cradles of supersonic flight. In 1948, the company hired German aviation pioneer Gerhard Neumann, who invented the variable stator. The revolutionary design allowed pilots to turn the vanes on the engine’s stator, change the pressure inside the turbine and make planes routinely fly faster than the speed of sound.

Gerhard Neumann (left) and Neil Burgess developed the J79 engine, GE’s first supersonic jet engine that could travel as fast as twice the speed of sound. Image credit: GE Aviation

In the 1960s, the company even built the GE4 supersonic engine for the Boeing 2707 plane, America’s supersonic answer to the Concorde made by Britain and France and Russia’s Tu-144. But the Boeing project was canceled due to rising costs and the lack of potential customers.

Russia’s Tupolev Tu-144. Image credit: Getty Images

The last Concorde is now part of the permanent exhibition at the Intrepid Air and Space Museum in New York City: Image credit: Shutterstock

GE makes several supersonic military engines today. Its latest design — the world’s first and only adaptive-cycle, three-stream engine —combines high fuel efficiency for subsonic flight with high thrust for supersonic performance.

GE’s ADVENT adaptive-cycle jet engine. Image credit: GE Aviation


Filed Under: Aerospace + defense

 

Related Articles Read More >

Mars helicopter receives Collier Trophy
Flexible rotary shafts to power Delta Airlines’ engines powering their first Airbus A321neo aircraft
Ontic acquires Servotek and Westcon product lines from Marsh Bellofram
Flexible rotary shafts support thrust reverser on 150 LEAP 1-A turbofan engines

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Industrial disc pack couplings
  • Pushing performance: Adding functionality to terminal blocks
  • Get to Know Würth Industrial Division
  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard

Design World Podcasts

July 26, 2022
Tech Tuesdays: Sorbothane marks 40 years of shock and vibration innovation
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • Subscribe!
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings