Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Transparent Wood Offers Eco-Friendly Alternative to Building Material

By Tierney King | April 5, 2019

Share

A new type of transparent wood that transmits light, and absorbs and releases heat could provide modern architecture with a new way to save on energy costs. The material can withstand heavy loads and is biodegradable, pertinent to being used in eco-friendly homes.

The researchers are presenting their results at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

“Back in 2016, we showed that transparent wood has excellent thermal-insulating properties compared with glass, combined with high optical transmittance,” says Céline Montanari, a Ph.D. student who is presenting the research at the meeting. “In this work, we tried to reduce the building energy consumption even more by incorporating a material that can absorb, store and release heat.”

As economic development rises, so does energy consumption. A lot of this energy is used to light, heat, and cool buildings, and although glass windows can emit light, they don’t store energy when the sun disappears.

In response, lead investigator Lars Berglund, Ph.D., and colleagues at KTH Royal Institute of Technology in Sweden, are presenting their new transparent wood. The team created the wood by removing the light-absorbing material called lignin from the cell walls of balsa wood. They also incorporated acrylic into the porous wood scaffold to reduce light scattering. From these techniques, the researchers could almost see through the material, where it still provided privacy if an entire building was made from it.

Montanari and Berglund also added polyethylene glycol to the de-lignified wood.

“We chose PEG because of its ability to store heat, but also because of its high affinity for wood,” says Montanari. “In Stockholm, there’s a really old ship called Vasa, and the scientists used PEG to stabilize the wood. So we knew that PEG can go really deep into the wood cells.”

PEG starts as a solid but can melt at temperatures of 80 F, which also stores energy in the process.

“During a sunny day, the material will absorb heat before it reaches the indoor space, and the indoors will be cooler than outside,” Montanari explains. “And at night, the reverse occurs –– the PEG becomes solid and releases heat indoors so that you can maintain a constant temperature in the house.”

The researchers hope this new type of material can impact building construction and provide an eco-friendly alternative to buildings other than using plastic, concrete, or glass. They hope the transparent wood will be available in five years for niche applications, and have plans to make the material even more energy-efficient.


Filed Under: Product design

 

Related Articles Read More >

Read COMSOL News 2021
PCB mills
Basics of printed circuit board milling machines
scilab
The top ten free engineering math software packages
hardcore programming for mechanical engineers
Book Review: Hardcore Programming for Mechanical Engineers, By Angel Sola Orbaiceta

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Renishaw next-generation FORTiS™ enclosed linear encoders offer enhanced metrology and reliability for machine tools
  • WAGO’s smartDESIGNER Online Provides Seamless Progression for Projects
  • Epoxy Certified for UL 1203 Standard
  • The Importance of Industrial Cable Resistance to Chemicals and Oils
  • Optimize, streamline and increase production capacity with pallet-handling conveyor systems
  • Global supply needs drive increased manufacturing footprint development

Design World Podcasts

June 12, 2022
How to avoid over engineering a part
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings