Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings

Ultra-Soft Dry Silicone Rubber Developed

By Harvard University | August 11, 2015

Share

 This is an ultra-soft elastomer fabricated by crosslinking bottlebrush polymers contains only crosslinks (red chains) and no entanglements. Image credit: Li-Heng Cai, Harvard SEASMedical implants mimic the softness of human tissue by mixing liquids such oil with long silicone polymers to create a squishy, wet gel.

While implants have improved dramatically over the years, there is still a chance of the liquid leaking, which can be painful and sometimes dangerous.

Now, led by David A. Weitz, Mallinckrodt Professor of Physics and Applied Physics at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and associate faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard, a team of polymer physicists and chemists has developed a way to create an ultra-soft dry silicone rubber.

This new rubber features tunable softness to match a variety of biological tissues, opening new opportunities in biomedical research and engineering.

The material is featured on the cover of the journal Advanced Materials.

“Conventional elastomers are intrinsically stiff because of how they are made,” said lead author Li-Heng Cai, a postdoctoral fellow at SEAS. “The network strands are very long and are entangled, similar to a bunch of Christmas lights, in which the cords are entangled and form knots. These fixed entanglements set up an intrinsic lower limit for the softness of conventional elastomers.”

In order to fabricate a soft elastomer, the team needed to eliminate the entanglements from the beginning by developing a new type of polymer that was fatter and less prone to entanglement than linear polymers. The polymers, nicknamed bottlebrushes, are easily synthesized by mixing three types of commercially available linear silicone polymers.

“Typically the fabrication of such bottlebrush molecules requires complex chemical synthesis,” said co-first author Thomas E. Kodger, Ph.D.’ 2015, now a postdoctoral fellow at University of Amsterdam. “But we found a very simple strategy by carefully designing the chemistry. This system creates soft elastomers as easily as silicone kits sold commercially.”

The softness of the elastomers can be precisely controlled by adjusting the amount of cross-linked polymers to mimic everything from soft brain tissue and relatively stiff cells.

“If there are no crosslinks, all the bottlebrush molecules are mobile and the material will flow like a viscous liquid such as honey,” said Cai. “Adding crosslinks connects the bottlebrush molecules and solidifies the liquid, increasing the material stiffness.”

In addition to controlling the softness, the team also found a way to independently control the liquid-like behavior of the elastomer.

“To make the conventional elastomer softer, one needs to swell it in a liquid,” said coauthor Michael Rubinstein, John P. Barker Distinguished Professor in Chemistry at the University of North Carolina at Chapel Hill. “But now we can adjust the length of ‘hairy’ polymers on the bottlebrush molecules to tune the liquid-like behavior of soft elastomers — without swelling — allowing us to make these elastomers exceptionally non-adhesive yet ultra-soft.”

These qualities make the material not only ideal for medical devices, such as implants, but also for commercial products such as cosmetics.

“The independent control over both softness and liquid-like behavior of the soft elastomers will also enable us to answer fundamental questions in biomedical research,” said Weitz. “For example, stem cell differentiation not only depends on the softness of materials with which they are in contact, but recent findings suggest that it is also affected by how liquid-like the materials are. This discovery will provide entirely new materials to study the cell behavior on soft substrates.”

“The exceptional combination of softness and negligible adhesiveness will greatly broaden the application of silicon-based elastomers in both industry and research,” said Weitz.


Filed Under: Materials • advanced

 

Related Articles Read More >

Self-lubricating and wear-resistant: igus bar stock for food, continuous operation and high media resistance
Minnesota Rubber and Plastics announces plans for new Innovation Center
The importance of resin selection
EXE014 - Image 1
Composite materials help place Italian race team in pole position

DESIGN GUIDE LIBRARY

“motion

Enews Sign Up

Motion Control Classroom

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Global supply needs drive increased manufacturing footprint development
  • How to Increase Rotational Capacity for a Retaining Ring
  • Cordis high resolution electronic proportional pressure controls
  • WAGO’s custom designed interface wiring system making industrial applications easier
  • 10 Reasons to Specify Valve Manifolds
  • Case study: How a 3D-printed tool saved thousands of hours and dollars

Design World Podcasts

May 17, 2022
Another view on additive and the aerospace industry
See More >
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • Advertising
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Engineering White Papers
  • LEAP AWARDS

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • 3D CAD
    • Electronics • electrical
    • Fastening & Joining
    • Factory automation
    • Linear Motion
    • Motion Control
    • Test & Measurement
    • Sensors
    • Fluid power
  • Learn
    • Ebooks / Tech Tips
    • Engineering Week
    • Future of Design Engineering
    • MC² Motion Control Classrooms
    • Podcasts
    • Videos
    • Webinars
  • LEAP AWARDS
  • Leadership
    • 2022 Voting
    • 2021 Winners
  • Design Guide Library
  • Resources
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Women in Engineering
  • Supplier Listings