Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Ultralight Science — Boundary Layer Measurements From Low-Flying Source

By Eric Verbeten, University of Wisconsin-Madison | May 17, 2018

On a grassy runway just outside of Madison, Grant Petty makes the final checks on his skeleton-framed airplane. Once ready, he hits the throttle and lurches forward. After a few 100 feet, the ultralight aircraft is airborne and climbing steadily, the scenery miniaturizing beneath Petty’s feet. He will ultimately reach a cruising speed of around 40 mph.

Petty is a professor of atmospheric science at the University of Wisconsin–Madison, and this flight is more than a hobbyist’s joyride. It’s part of a research project aimed at better understanding the Earth’s atmosphere. Instruments strapped to the wings and the cockpit of the aircraft collect atmospheric data while it is airborne, gathering data from a part of Earth’s atmosphere known as the boundary layer.

“The ultralight, low-altitude aircraft can capture what’s happening in the lower atmosphere where much of the turbulence is,” says Ankur Desai, one of Petty’s collaborators on the project in the Department of Atmospheric and Oceanic Sciences (AOS). “It’s key to understanding coupling of the surface to the atmosphere in an experimental way.”

Coupling is the process of heat and moisture exchange between the Earth’s surface and the atmosphere. Scientists study this exchange because it provides a window into our climate system. The ultralight aircraft may provide an ideal platform for measuring it since it can peer into parts of the atmosphere and capture measurements not otherwise possible with tools like satellites, ground-based instruments, or high-speed aircraft, like NASA’s ER-2.

“The onboard equipment includes ones similar to what you might find in a home weather-station: tools like an anemometer, thermometer, pressure and humidity sensors,” says Desai. “Other equipment allows us to measure water fluxes, or evaporation off the surface, in addition to collecting data on land and surface properties.”

The UW Ultralight project came to fruition in the summer of 2017, when Petty (who is the principal investigator for the project) and UW–Madison Space Science and Engineering Center (SSEC) researcher Jonathan Thom got to work assembling the ultralight Zigolo MG12 craft. After three weeks of careful hand-assembly, Petty took the first test flight in August 2017, with a couple of “crow hops” – short takeoffs and immediate landings – until he felt comfortable ascending higher.

Petty is currently the only pilot for the project but hopes to expand the program to include other experienced pilots who can help collect the atmospheric data needed by scientists. The team, which also includes AOS Professor Tristan L’Ecuyer, sees the ultralight as a way to fill gaps in our understanding about atmospheric physics.

“Although the initial measurements will be focused on land-atmosphere couplings in Wisconsin, the goal is to eventually collect a diverse sample that can tell us, in greater detail, how the surface interacts with the atmosphere,” says L’Ecuyer. “We’re excited about the simplicity and ability to quickly adapt the instruments, flight paths, and science objectives based on what we’re learning.”

The craft usually flies between 150-to-1,500 feet above the ground and can remain airborne for a little more than four hours on a full tank of gas. It weighs in around 485 pounds and can take off from short, unpaved runways less than 200 feet long. Commercial airline jets, by comparison, weigh more than 600,000 pounds and require more than 10,000 feet of runway for takeoff.

However, with a load capacity of only 260 pounds, heavy onboard instruments present an engineering challenge for the project. It will require researchers to either design new instruments from the ground up or to reconfigure pre-built instrumentation to shed excess weight.

Fortunately, SSEC and AOS have a long history of do-it-yourself aviation projects and instrument building, dating back to the 1950s. Petty plans to tap this local expertise to adapt instruments to the craft, including involving students in hands-on curricula for instrument testing and calibration. He sees this as a great opportunity to engage them in the field of remote sensing.

The team plans to eventually convert the plane’s 25-horsepower gasoline engine into an all-electric motor through a conversion kit, which will allow them to collect accurate pollution and particulate measurements without interference from exhaust. Other experiments include measuring evapotranspiration rates over agricultural fields (the process by which water is transferred from the soil and from plants into the atmosphere), moisture exchange from Madison’s lakes, and winter flights over Lake Mendota’s frozen surface.

Using a new type of infrared measuring device, the ultralight will also serve as a testbed for NASA’s Polar Radiant Energy in the Far Infrared Experiment (PREFIRE).

Currently in the planning stages, PREFIRE will involve CubeSats – small satellites roughly the size of a loaf of bread – to collect data over the Arctic and measure frequencies in the far infrared part of the electromagnetic spectrum. This will allow scientists to measure energy emissions from the Arctic, a rarely-studied part of the energy cycle there, and can be used to better predict how fast Arctic snow and ice will melt.

By flying winter transects over Madison’s frozen lakes, L’Ecuyer says the ultralight will be used to collect the data needed for calibration and other comparative studies as the PREFIRE program is developed.

Reaching a peak altitude of 1,100 feet., Petty ends his test flight with a final maneuver, banking toward the landing strip where the ultralight grazes the ground and eventually comes to a gentle stop. Satisfied with the test results, Petty and Thom put the craft away in a storage hangar.

“We are looking forward to accommodating researchers across campus who maybe can’t afford projects with high-end planes but could use the data available to us,” Petty says. “We’re excited to see what people come up with for ideas and uses for this platform.”

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.