Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe

Unexpected Trove of Gas Discovered Around Larger Stars

By National Radio Astronomy Observatory | August 26, 2016

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) surveyed dozens of young stars — some Sun-like and others approximately double that size — and discovered that the larger variety have surprisingly rich reservoirs of carbon monoxide gas in their debris disks. In contrast, the lower-mass, Sun-like stars have debris disks that are virtually gas-free.

This finding runs counter to astronomers’ expectations, which hold that stronger radiation from larger stars should strip away gas from their debris disks faster than the comparatively mild radiation from smaller stars. It may also offer new insights into the timeline for giant planet formation around young stars.

Debris disks are found around stars that have shed their dusty, gas-filled protoplanetary disks and gone on to form planets, asteroids, comets, and other planetesimals. Around younger stars, however, many of these newly formed objects have yet to settle into stately orbits and routinely collide, producing enough rubble to spawn a “second-generation” disk of debris.

“Previous spectroscopic measurements of debris disks revealed that certain ones had an unexpected chemical signature suggesting they had an overabundance of carbon monoxide gas,” said Jesse Lieman-Sifry, lead author on a paper published in Astrophysical Journal. At the time of the observations, Lieman-Sifry was an undergraduate astronomy major at Wesleyan University in Middletown, Connecticut. “This discovery was puzzling since astronomers believe that this gas should be long gone by the time we see evidence of a debris disk,” he said.

In search of clues as to why certain stars harbor gas-rich disks, Lieman-Sifry and his team surveyed 24 star systems in the Scorpius-Centaurus Association. This loose stellar agglomeration, which lies a few hundred light-years from Earth, contains hundreds of low- and intermediate-mass stars. For reference, astronomers consider our Sun to be a low-mass star.

The astronomers narrowed their search to stars between five and ten million years old — old enough to host full-fledged planetary systems and debris disks — and used ALMA to examine the millimeter-wavelength “glow” from the carbon monoxide in the stars’ debris disks.

The team carried out their survey over a total of six nights between December 2013 and December 2014, observing for a mere ten minutes each night. At the time it was conducted, this study constituted the most extensive millimeter-wavelength interferometric survey of stellar debris disks ever achieved.

Armed with an incredibly rich set of observations, the astronomers found the most gas-rich disks ever recorded in a single study. Among their sample of two dozen disks, the researchers spotted three that exhibited strong carbon monoxide emission. Much to their surprise, all three gas-rich disks surrounded stars about twice as massive as the Sun. None of the 16 smaller, Sun-like stars in the sample appeared to have disks with large stores of carbon monoxide.

This finding is counterintuitive because higher-mass stars flood their planetary systems with energetic ultraviolet radiation that should destroy the carbon monoxide gas lingering in their debris disks. This new research reveals, however, that the larger stars are somehow able to either preserve or replenish their carbon monoxide stockpiles.

“We’re not sure whether these stars are holding onto reservoirs of gas much longer than expected, or whether there’s a sort of ‘last gasp’ of second-generation gas produced by collisions of comets or evaporation from the icy mantles of dust grains,” said Meredith Hughes, an astronomer at Wesleyan University and coauthor of the study.

The existence of this gas may have important implications for planet formation, says Hughes. Carbon monoxide is a major constituent of the atmospheres of giant planets. Its presence in debris disks could mean that other gases, including hydrogen, are present, but perhaps in much lower concentrations. If certain debris disks are able to hold onto appreciable amounts of gas, it might push back astronomers’ expected deadline for giant planet formation around young stars, the astronomers speculate.

“Future high-resolution observations of these gas-rich systems may allow astronomers to infer the location of the gas within the disk, which may shed light on the origin of the gas,” says co-author Antonio Hales, an astronomer with the Joint ALMA Observatory in Santiago, Chile, and the National Radio Astronomy Observatory in Charlottesville, Virginia. “For instance, if the gas was produced by planetesimal collisions, it should be more highly concentrated in regions of the disk where those impacts occurred. ALMA is the only instrument capable of making these kind of high-resolution images.”

According to Lieman-Sifry, these dusty disks are just as diverse as the planetary systems they accompany. The discovery that the debris disks around some larger stars retain carbon monoxide longer than their Sun-like counterparts may provide insights into the role this gas plays in the development of planetary systems.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

You Might Also Like


Filed Under: Aerospace + defense

 

LEARNING CENTER

Design World Learning Center
“dw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.
Motor University

Design World Digital Edition

cover

Browse the most current issue of Design World and back issues in an easy to use high quality format. Clip, share and download with the leading design engineering magazine today.

EDABoard the Forum for Electronics

Top global problem solving EE forum covering Microcontrollers, DSP, Networking, Analog and Digital Design, RF, Power Electronics, PCB Routing and much more

EDABoard: Forum for electronics

Sponsored Content

  • Widening the scope for machine tool designers with FORTiS™ enclosed encoder
  • Sustainability, Innovation and Safety, Central to Our Approach
  • Why off-highway is the sweet spot for AC electrification technology
  • Looking to 2025: Past Success Guides Future Achievements
  • North American Companies Seek Stronger Ties with Italian OEMs
  • Adapt and Evolve
View More >>
Engineering Exchange

The Engineering Exchange is a global educational networking community for engineers.

Connect, share, and learn today »

Design World
  • About us
  • Contact
  • Manage your Design World Subscription
  • Subscribe
  • Design World Digital Network
  • Control Engineering
  • Consulting-Specifying Engineer
  • Plant Engineering
  • Engineering White Papers
  • Leap Awards

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Design World

  • Home
  • Technologies
    • ELECTRONICS • ELECTRICAL
    • Fastening • joining
    • FLUID POWER
    • LINEAR MOTION
    • MOTION CONTROL
    • SENSORS
    • TEST & MEASUREMENT
    • Factory automation
    • Warehouse automation
    • DIGITAL TRANSFORMATION
  • Learn
    • Tech Toolboxes
    • Learning center
    • eBooks • Tech Tips
    • Podcasts
    • Videos
    • Webinars • general engineering
    • Webinars • Automated warehousing
    • Voices
  • LEAP Awards
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
    • 2021 Winners
  • Design Guides
  • Resources
    • Subscribe
    • 3D Cad Models
      • PARTsolutions
      • TraceParts
    • Digital Issues
      • Design World
      • EE World
    • Educational Assets
    • Engineering diversity
    • Trends
  • Supplier Listings
  • Advertise
  • Subscribe
We use cookies to personalize content and ads, to provide social media features, and to analyze our traffic. We share information about your use of our site with our social media, advertising, and analytics partners who may combine it with other information you’ve provided to them or that they’ve collected from your use of their services. You consent to our cookies if you continue to use this website.